Tailings ponds are places for storing industrial waste. The saturation line is the crucial factor in quantifying the safety of tailings ponds. Existing saturation line time-series prediction methods are mainly based on statistical models or shallow machine learning models. Although these models aim to capture the time dependence of the sequence data, the channel and temporal are even unavailable in principle. To mitigate this problem, in this paper, we present a two-stage forecasting method, which embeds the channel and temporal attention into a hybrid CNN-LSTM model to predict the saturation line. The channel and temporal attention are utilized to capture subtle high-dimensional time-series dependence. In the first stage, the discrete wavelet transform (DWT) is applied to capture the refined sequence information. In the second stage, the CNN-LSTM model is utilized to learn the basic spatial and temporal features in the time series. Furthermore, the channel and temporal attention model are embedded into the CNN-LSTM model to enhance the feature-extracting ability in the channel and temporal dimensions. Consequently, our proposed model is shown to outperform classic models on multiple real-world datasets in terms of RMSE, MAPE, R 2 and MAE, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.