This paper presents a unified calculation method and its application in determining the uniaxial mechanical properties of concrete with concrete strengths ranging from 10 to 140 MPa. By analyzing a large collection of test results of the uniaxial mechanical properties of normal-strength, high-strength and super high-strength concrete in China and performing a regression analysis, unified calculation formulas for the mechanical indexes of concrete are proposed that can be applied to various grades of concrete for determining the size coefficient, uniaxial compressive strength, uniaxial tensile strength, elastic modulus, and strain at peak uniaxial compression and tension. Optimized mathematical equations for the nonlinear stress-strain relationship of concrete, including the ascending and descending branches under uniaxial stress, are also established. The elastic modulus is almost constant throughout the elastic stage for the ascending branches of the stress-strain relationship for concrete. The proposed stress-strain relationship of concrete was applied to the nonlinear finite element analysis of both a steel-concrete composite beam and a concrete-filled steel tubular stub column. The analytical results are in good agreement with the experiment results, indicating that the proposed stress-strain relationship of concrete is applicable. The achievements presented in this paper can be used as references for the design and nonlinear finite element analysis of concrete structures.
Carbon nanotube (CNT) coatings were utilized to enhance the interfacial properties of carbon fiber (CF)/epoxy(EP) composites by ultrasonically assisted electrophoretic deposition (EPD). A characterization of the CF surface properties was done before and after coating (surface chemistry, surface morphologies, and surface energy). The result shows that oxygenated groups concentrations of the CF surfaces experienced significant increases from 12.11% to 24.78%. Moreover, the uniform and homogeneous CNT films were tightly attached on the surface of CF, and the surface wettability of CF is significant improved by enhanced surface free energy when introduced ultrasonic during the EPD process. In addition, the interlaminar shear strength (ILSS) and water absorption of CF/EP composite were measured. Scanning electron microscopy (SEM) revealed that the fracture mechanisms of the new interface layer formed by depositing CNTs on the CF surface contributed to the enhancement of the mechanical performance of the epoxy. This means that the efficient method to improve interfacial performance of composites has shown great commercial application potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.