Vaginal inflammation is a common disease of the dairy cows' reproductive tract. Lactic acid bacteria can combat purulent inflammation caused by pathogenic bacteria and regulate the NF-κB signaling pathway mediated by toll-like receptors (TLRs) in the inflammatory response. We studied the effect of Lactobacillus johnsonii SQ0048, an isolate with antibacterial activity, on the NF-κB signaling pathway in cow vaginal epithelial cells. The expression levels of serial effectors related to the TLRs-MyD88/NF-κB signaling pathway (TLR2, TLR4, MyD88, IKK, NF-κB, IL-1β, IL-6, TNF-α, and IL-10) were measured with real-time polymerase chain reaction (RT-PCR), ELISA, and Western blot analyses. TLR2 and TLR4 were activated by SQ0048 cells, as noted by increased mRNA expression levels of TLR2 and TLR4 in SQ0048-treated bovine vaginal epithelial cells relative to control cells (P <0.01). SQ0048 treatment also significantly increased MyD88 and IKK expression, and activated NF-κB in vaginal epithelial cells (P <0.01). In addition, SQ0048 treatment also significantly increased mRNA expression levels of IL-1β, IL-6, and TNF-α, but decreased IL-10 mRNA expression levels (P <0.01). These data indicate that strain SQ0048 presence can improve the immune functions of cow vaginal epithelial cells by activating TLRs-MyD88/NF-κB signaling pathways. However, further in vivo studies are required to confirm these findings.
Background Lactic acid bacteria with probiotic and antibacterial properties were isolated from the vagina of healthy cows. The purpose of the study is to isolation and screening of lactic acid bacteria strains with antibacterial properties from the vagina of healthy cows, which could be used to treat cow vaginal inflammation. Results Isolation and identification of eight dominant lactic acid bacteria strains from 55 isolates was performed using classic microbiology methods and fermentation engineering. Eight strains were selected that had no spores and capsules, exhibited strong acid production capacity (pH <4.5) and had a rapid acid production (time ≤12 h) at the lowest pH. These strains were screened using fermentation engineering, pharmacology, cell biology and molecular biology methods. Lactobacillus johnsonii (SQ0048) had the lowest pH (4.32) and shortest acid-producing time (8 h). L. johnsonii (SQ0048) could produce hydrogen peroxide, inhibit the growth of Staphylococcus aureus and Escherichia coli and adhere to the vaginal epithelial cells of cows. The average number adhering to each cell was 304±2.67. Bacteriocin genes were detected in L. johnsonii (SQ0048), and the bacteriocin gene of a positive clone of this strain was 100% similar to that of Lactobacillus johnsonii NCC 533 (NC_005362.1). Expression of the bacteriocin genes had inhibitory activity against S. aureus and E. coli. Conclusions These advantages indicate that SQ0048 is a promising candidate for use in antimicrobial preparations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.