It has long been established that premature leaf senescence negatively impacts the yield stability of rice, but the underlying molecular mechanism driving this relationship remains largely unknown. Here, we identified a dominant premature leaf senescence mutant, prematurely senile 1 (ps1-D). PS1 encodes a plantspecific NAC (no apical meristem, Arabidopsis ATAF1/2, and cupshaped cotyledon2) transcriptional activator, Oryza sativa NAC-like, activated by apetala3/pistillata (OsNAP). Overexpression of OsNAP significantly promoted senescence, whereas knockdown of OsNAP produced a marked delay of senescence, confirming the role of this gene in the development of rice senescence. OsNAP expression was tightly linked with the onset of leaf senescence in an age-dependent manner. Similarly, ChIP-PCR and yeast onehybrid assays demonstrated that OsNAP positively regulates leaf senescence by directly targeting genes related to chlorophyll degradation and nutrient transport and other genes associated with senescence, suggesting that OsNAP is an ideal marker of senescence onset in rice. Further analysis determined that OsNAP is induced specifically by abscisic acid (ABA), whereas its expression is repressed in both aba1 and aba2, two ABA biosynthetic mutants. Moreover, ABA content is reduced significantly in ps1-D mutants, indicating a feedback repression of OsNAP on ABA biosynthesis. Our data suggest that OsNAP serves as an important link between ABA and leaf senescence. Additionally, reduced OsNAP expression leads to delayed leaf senescence and an extended grain-filling period, resulting in a 6.3% and 10.3% increase in the grain yield of two independent representative RNAi lines, respectively. Thus, fine-tuning OsNAP expression should be a useful strategy for improving rice yield in the future.hormones | nutrition remobilization | programmed cell death L eaf senescence is an integral part of the final stages of plant development and is controlled by a fine-tuned, complex regulatory network (1). During senescence, leaf cells undergo dramatic changes in cellular metabolism, structure, and gene expression (2, 3). The most striking feature of these changes is the yellowing of the leaves caused by the breakdown of chlorophyll during chloroplast degeneration, followed by the hydrolysis of macromolecules such as lipids, proteins, and nucleic acids, which, in turn, results in mitochondria and nuclei dissociation and cell death (4, 5). This process facilitates both hydrolysis and the recycling of nutrients from source to sink tissues to increase reproductive success (6). Thus, senescence is not a passive process but rather is a developmentally programmed procedure that has a strong adaptive advantage (7,8). Although leaf senescence is controlled primarily by developmental age, the onset and progression of this process also is influenced by a number of endogenous and external factors (1, 9, 10). For example, abscisic acid (ABA) is thought to be one of the phytohormones that promote leaf senescence (11, 12). Specifically, both an upregu...
Asian cultivated rice (Oryza sativa L.) consists of two main subspecies, indica and japonica. Indica has higher nitrate-absorption activity than japonica, but the molecular mechanisms underlying that activity remain elusive. Here we show that variation in a nitrate-transporter gene, NRT1.1B (OsNPF6.5), may contribute to this divergence in nitrate use. Phylogenetic analysis revealed that NRT1.1B diverges between indica and japonica. NRT1.1B-indica variation was associated with enhanced nitrate uptake and root-to-shoot transport and upregulated expression of nitrate-responsive genes. The selection signature of NRT1.1B-indica suggests that nitrate-use divergence occurred during rice domestication. Notably, field tests with near-isogenic and transgenic lines confirmed that the japonica variety carrying the NRT1.1B-indica allele had significantly improved grain yield and nitrogen-use efficiency (NUE) compared to the variety without that allele. Our results show that variation in NRT1.1B largely explains nitrate-use divergence between indica and japonica and that NRT1.1B-indica can potentially improve the NUE of japonica.
In Arabidopsis thaliana, the GSK3/SHAGGY-like kinase BRASSINOSTEROID-INSENSITIVE2 (BIN2) plays a critical role in the brassinosteroid (BR) signaling pathway by negatively regulating the activities of bri1-EMS-SUPPRESSOR1/BRASSINAZOLE-RESISTANT1 family transcription factors that regulate the expression of downstream BR-responsive genes. In this study, we analyzed the function of a rice (Oryza sativa) GSK3/SHAGGY-like kinase (GSK2), which is one of the orthologs of BIN2. Overexpression of GSK2 (Go) led to plants with typical BR loss-of-function phenotypes, and suppression of GSK2 resulted in enhanced BR signaling phenotypes. DWARF AND LOW-TILLERING (DLT) is a positive regulator that mediates several BR responses in rice. Suppression of DLT can enhance the phenotypes of BR receptor mutant d61-1, and overexpression of DLT obviously suppressed the BR loss-of-function phenotypes of both d61-1 and Go, suggesting that DLT functions downstream of GSK2 to modulate BR responses. Indeed, GSK2 can interact with DLT and phosphorylate DLT. Moreover, brassinolide treatment can induce the dephosphorylation of DLT, leading to the accumulation of dephosphorylated DLT protein. In GSK2 transgenic plants, the DLT phosphorylation level is dictated by the GSK2 level. These results demonstrate that DLT is a GSK2 substrate, further reinforcing that the BIN2/GSK2 kinase has multiple substrates that carry out various BR responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.