This prognostic study evaluates whether psychosis transition can be predicted in patients with clinical high-risk syndromes or recent-onset depression by multimodal machine learning that optimally integrates clinical and neurocognitive data, structural magnetic resonance imaging, and polygenic risk scores for schizophrenia.
BACKGROUND: The clinical high risk (CHR) paradigm has facilitated research into the underpinnings of help-seeking individuals at risk for developing psychosis, aiming at predicting and possibly preventing transition to the overt disorder. Statistical methods such as machine learning and Cox regression have provided the methodological basis for this research by enabling the construction of diagnostic models (i.e., distinguishing CHR individuals from healthy individuals) and prognostic models (i.e., predicting a future outcome) based on different data modalities, including clinical, neurocognitive, and neurobiological data. However, their translation to clinical practice is still hindered by the high heterogeneity of both CHR populations and methodologies applied. METHODS: We systematically reviewed the literature on diagnostic and prognostic models built on Cox regression and machine learning. Furthermore, we conducted a meta-analysis on prediction performances investigating heterogeneity of methodological approaches and data modality. RESULTS: A total of 44 articles were included, covering 3707 individuals for prognostic studies and 1052 individuals for diagnostic studies (572 CHR patients and 480 healthy control subjects). CHR patients could be classified against healthy control subjects with 78% sensitivity and 77% specificity. Across prognostic models, sensitivity reached 67% and specificity reached 78%. Machine learning models outperformed those applying Cox regression by 10% sensitivity. There was a publication bias for prognostic studies yet no other moderator effects. CONCLUSIONS: Our results may be driven by substantial clinical and methodological heterogeneity currently affecting several aspects of the CHR field and limiting the clinical implementability of the proposed models. We discuss conceptual and methodological harmonization strategies to facilitate more reliable and generalizable models for future clinical practice.
Identifying psychosis subgroups could improve clinical and research precision. Research has focused on symptom subgroups, but there is a need to consider a broader clinical spectrum, disentangle illness trajectories, and investigate genetic associations. OBJECTIVE To detect psychosis subgroups using data-driven methods and examine their illness courses over 1.5 years and polygenic scores for schizophrenia, bipolar disorder, major depression disorder, and educational achievement. DESIGN, SETTING, AND PARTICIPANTS This ongoing multisite, naturalistic, longitudinal (6-month intervals) cohort study began in January 2012 across 18 sites. Data from a referred sample of 1223 individuals (765 in the discovery sample and 458 in the validation sample) with DSM-IV diagnoses of schizophrenia, bipolar affective disorder (I/II), schizoaffective disorder, schizophreniform disorder, and brief psychotic disorder were collected from secondary and tertiary care sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.