Reprogramming of mouse fibroblasts toward a myocardial cell fate by forced expression of cardiac transcription factors or microRNAs has recently been demonstrated. The potential clinical applicability of these findings is based on the minimal regenerative potential of the adult human heart and the limited availability of human heart tissue. An initial but mandatory step toward clinical application of this approach is to establish conditions for conversion of adult human fibroblasts to a cardiac phenotype. Toward this goal, we sought to determine the optimal combination of factors necessary and sufficient for direct myocardial reprogramming of human fibroblasts. Here we show that four human cardiac transcription factors, including GATA binding protein 4, Hand2, T-box5, and myocardin, and two microRNAs, miR-1 and miR-133, activated cardiac marker expression in neonatal and adult human fibroblasts. After maintenance in culture for 4-11 wk, human fibroblasts reprogrammed with these proteins and microRNAs displayed sarcomere-like structures and calcium transients, and a small subset of such cells exhibited spontaneous contractility. These phenotypic changes were accompanied by expression of a broad range of cardiac genes and suppression of nonmyocyte genes. These findings indicate that human fibroblasts can be reprogrammed to cardiac-like myocytes by forced expression of cardiac transcription factors with muscle-specific microRNAs and represent a step toward possible therapeutic application of this reprogramming approach.cardiogenesis | cell fate specification | phenotypic switching | regeneration
Imaging for cryptorchidism is not recommended prior to referral, which should occur by 6 months of age. Orchidopexy (orchiopexy is the preferred term) is the most successful therapy to relocate the testis into the scrotum, while hormonal therapy is not recommended. Successful scrotal repositioning of the testis may reduce but does not prevent the potential long-term issues of infertility and testis cancer. Appropriate counseling and follow-up of the patient is essential.
Incomplete urethral tubularization (hypospadias) and anorectal abnormalities are two common and poorly understood birth defects that affect the extreme caudal midline of the human embryo. We now show that cell surface molecules essential for proper axon pathfinding in the developing nervous system, namely ephrin-B2 and the ephrin receptors EphB2 and EphB3, also play major roles in cell adhesion events that tubularize the urethra and partition the urinary and alimentary tracts. Mice carrying mutations which disrupt the bidirectional signals that these molecules transduce develop with variably penetrant severe hypospadias and incomplete midline fusion of the primitive cloaca. We further show that animals completely lacking ephrin-B2 reverse signaling present a fully penetrant failure in cloacal septation. This results in severe anorectal malformations characterized by an absence of the terminal-most hindgut (rectum) and formation of a fistula that aberrantly connects the intestines to the urethra at the base of the bladder. Consistent with an apparent requisite for both forward and reverse signaling in these caudal remodeling events, EphB2 and ephrin-B2 are coexpressed at the midline in the fusing urethral/cloacal endoderm and underlying lateral mesoderm of the urorectal septum that migrates toward the caudal midline as the cloaca septates. Our data thus indicate that B-subclass Eph and ephrin molecules play an important role in these clinically significant midline cell-cell adhesion and fusion events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.