Understanding screening sensitivity and tumour progression is important for designing and evaluating screening programmes for breast cancer. Several approaches for estimating tumour growth rates have been described, some of which simultaneously estimate (mammography) screening sensitivity. None of the continuous tumour growth modelling approaches has incorporated mammographic density, although it is known to have a profound influence on mammographic screening sensitivity. We describe a new approach for estimating breast cancer tumour growth which builds on recently described continuous tumour growth models and estimates mammographic screening sensitivity as a function of tumour size and mammographic density.
Continuous growth models show great potential for analysing cancer screening data. We recently described such a model for studying breast cancer tumour growth based on modelling tumour size at diagnosis, as a function of screening history, detection mode, and relevant patient characteristics. In this article, we describe how the approach can be extended to jointly model tumour size and number of lymph node metastases at diagnosis. We propose a new class of lymph node spread models which are biologically motivated and describe how they can be extended to incorporate random effects to allow for heterogeneity in underlying rates of spread. Our final model provides a dramatically better fit to empirical data on 1860 incident breast cancer cases than models in current use. We validate our lymph node spread model on an independent data set consisting of 3961 women diagnosed with invasive breast cancer.
Comparisons of survival times between screen-detected and symptomatically detected breast cancer cases are subject to lead time and length biases. Whilst the existence of these biases is well known, correction procedures for these are not always clear, as are not the interpretation of these biases. In this paper we derive, based on a recently developed continuous tumour growth model, conditional lead time distributions, using information on each individual's tumour size, screening history and percent mammographic density. We show how these distributions can be used to obtain an individual-based (conditional) procedure for correcting survival comparisons. In stratified analyses, our correction procedure works markedly better than a previously used unconditional lead time correction, based on multi-state Markov modelling. In a study of postmenopausal invasive breast cancer patients, we estimate that, in large (>12 mm) tumours, the multi-state Markov model correction over-corrects five-year survival by 2-3 percentage points. The traditional view of length bias is that tumours being present in a woman's breast for a long time, due to being slow-growing, have a greater chance of being screen-detected. This gives a survival advantage for screening cases which is not due to the earlier detection by screening. We use simulated data to share the new insight that, not only the tumour growth rate but also the symptomatic tumour size will affect the sampling procedure, and thus be a part of the length bias through any link between tumour size and survival. We explain how this has a bearing on how observable breast cancerspecific survival curves should be interpreted. We also propose an approach for correcting survival comparisons for the length bias.
The use of the internet has considerably increased over recent years, and the importance of internet use has also grown as services have gone online. Sweden is largely an information society like other countries with high reported use amongst European countries. In line with digitalization development, society is also changing, and many activities and services today take place on the internet. This development could potentially lead to those older persons who do not use the internet or do not follow the development of services on the internet finding it difficult to take part in information and activities that no longer occur in the physical world. This has led to a digital divide between groups, where the older generations (60+), in particular, have been affected. In a large study of Sweden’s adult population in 2019, 95 percent of the overall population was said to be internet users, and the corresponding number for users over 66 years of age was 84%. This study shows that the numbers reported about older peoples’ internet use, most likely, are vastly overestimated and that real use is significantly lower, especially among the oldest age groups. We report that 62.4% of the study subjects are internet users and that this number most likely also is an overestimation. When looking at nonresponders to the questionnaire, we find that they display characteristics generally attributed to non-use, such as lower education, lower household economy, and lower cognitive functioning.
IntroductionA large body size is associated with larger breast cancer tumours at diagnosis. Standard regression models for tumour size at diagnosis are not sufficient for unravelling the mechanisms behind the association.MethodsUsing Swedish case-control data, we identified 1352 postmenopausal women with incident invasive breast cancer diagnosed between 1993 and 1995. We used a novel continuous tumour growth model, which models tumour sizes at diagnosis through three submodels: for tumour growth, time to symptomatic detection, and screening sensitivity. Tumour size at other time points is thought of as a latent variable.ResultsWe quantified the relationship between body size with tumour growth and time to symptomatic detection. High body mass index and large breast size are, respectively, significantly associated with fast tumour growth rate and delayed time to symptomatic detection (combined P value = 5.0 × 10−5 and individual P values = 0.089 and 0.022). We also quantified the role of mammographic density in screening sensitivity.ConclusionsThe times at which tumours will be symptomatically detected may vary substantially between women with different breast sizes. The proposed tumour growth model represents a novel and useful approach for quantifying the effects of breast cancer risk factors on tumour growth and detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.