It was thought until recently that bacteria lack the actin or tubulin filament networks that organize eukaryotic cytoplasm. However, we show here that the bacterial MreB protein assembles into filaments with a subunit repeat similar to that of F-actin-the physiological polymer of eukaryotic actin. By elucidating the MreB crystal structure we demonstrate that MreB and actin are very similar in three dimensions. Moreover, the crystals contain protofilaments, allowing visualization of actin-like strands at atomic resolution. The structure of the MreB protofilament is in remarkably good agreement with the model for F-actin, showing that the proteins assemble in identical orientations. The actin-like properties of MreB explain the finding that MreB forms large fibrous spirals under the cell membrane of rod-shaped cells, where they are involved in cell-shape determination. Thus, prokaryotes are now known to possess homologues both of tubulin, namely FtsZ, and of actin.
Bacterial cell division ends with septation, the constriction of the cell wall and cell membranes that leads to the formation of two daughter cells. During septation, FtsZ, a protein of relative molecular mass 40,000 which is ubiquitous in eubacteria and is also found in archaea and chloroplasts, localizes early at the division site to form a ring-shaped septum. This septum is required for the mechanochemical process of membrane constriction. FtsZ is a GTPase with weak sequence homology to tubulins. The nature of FtsZ polymers in vivo is unknown, but FtsZ can form tubules, sheets and minirings in vitro. Here we report the crystal structure at 2.8 A resolution of recombinant FtsZ from the hyperthermophilic methanogen Methanococcus jannaschii. FtsZ has two domains, one of which is a GTPase domain with a fold related to one found in the proteins p21ras and elongation factor EF-Tu. The carboxy-terminal domain, whose function is unknown, is a four-stranded beta-sheet tilted by 90 degrees against the beta-sheet of the GTPase domain. The two domains are arranged around a central helix. GDP binding is different from that typically found in GTPases and involves four phosphate-binding loops and a sugar-binding loop in the first domain, with guanine being recognized by residues in the central connecting helix. The three-dimensional structure of FtsZ is similar to the structure of alpha- and beta-tubulin.
Tubulin and FtsZ share a common fold of two domains connected by a central helix. Structure-based sequence alignment shows that common residues localize in the nucleotide-binding site and a region that interacts with the nucleotide of the next tubulin subunit in the protofilament, suggesting that tubulin and FtsZ use similar contacts to form filaments. Surfaces that would make lateral interactions between protofilaments or interact with motor proteins are, however, different. The highly conserved nucleotide-binding sites of tubulin and FtsZ clearly differ from those of EF-Tu and other GTPases, while resembling the nucleotide site of glyceraldehyde-3-phosphate dehydrogenase. Thus, tubulin and FtsZ form a distinct family of GTP-hydrolyzing proteins.
Tubulin is a major component of the eukaryotic cytoskeleton, controlling cell shape, structure and dynamics, whereas its bacterial homolog FtsZ establishes the cytokinetic ring that constricts during cell division 1,2 . How such different roles of tubulin and FtsZ evolved is unknown. Archaea may hold clues as these organisms share characteristics with Eukarya and Bacteria 3 . Here we report the structure and function of proteins from a distinct family related to tubulin and FtsZ, named CetZ, which co-exists with FtsZ in many archaea. CetZ crystal structures showed the FtsZ/ tubulin superfamily fold, and one crystal form contained sheets of protofilaments, suggesting a structural role. However, inactivation of the CetZs in Haloferax volcanii did not affect cell division. Instead, CetZ1 was required for differentiation of the irregular plate-shaped cells into a rod-shaped cell type that was essential for normal swimming motility. CetZ1 formed dynamic cytoskeletal structures in vivo, relating to its capacity to remodel the cell envelope and direct rod formation. CetZ2 was also implicated in H. volcanii cell shape control. Our findings expand the known roles of the FtsZ/tubulin superfamily to include archaeal cell shape dynamics, suggesting that a cytoskeletal role might predate eukaryotic cell evolution, and they support the premise that a major function of microbial rod-shape is to facilitate swimming.Many archaea have FtsZ that appears to function in cell division 4-8 . However, unlike bacteria, archaeal genomes frequently contain additional genes belonging to the FtsZ/tubulin superfamily 9 . These genes are abundant in the haloarchaea, which dominate hyper-saline lakes globally 10 and are generally noted for their unusual flattened cell morphologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.