PostprintThis is the accepted version of a paper published in Fuel processing technology. This paper has been peer-reviewed but does not include the final publisher proof-corrections or journal pagination.Citation for the original published paper (version of record):Skoglund, N., Bäfver, L., Fahlström, J., Holmén, E., Renström, C. (2016) Fuel design in co-combustion of demolition wood chips and municipal sewage sludge Fuel processing technology, 141(2): 196-201 ABSTRACT: Municipal sewage sludge (MSS) is a waste stream resource which contains both energy and elements such as phosphorus which could be recycled. If these two aspects of this waste stream resource are to be used to their full potential the sludge should not be used in landfills or road construction. There is some use of sludge in agriculture today but not all MSS produced is suitable for direct use on arable land due to its content of potentially harmful elements, pathogens or anthropogenic chemicals. By combusting sludge that is not used directly in agriculture the problematic organic content could be destroyed. The combustion process also produces an ash that possibly could be used either directly in agriculture or as a raw material for recovering phosphorus and energy could be recovered. Building mono-combustion plants for sewage sludge is not economically feasible in all parts of the world so it is of interest to investigate how MSS can be introduced together with other fuels in existing infrastructure which already have extensive cleaning systems for potentially harmful elements.To investigate this possible path, demolition wood chips (DWC) were co-combusted with municipal sewage sludge (MSS) in a grate-fired combined heat and power plant running at 50% capacity producing 25 MW th and 9 MW el . The amount of MSS that was suitable to introduce in blends was determined using a "fuel fingerprint" based on the composition of the raw materials. Thermodynamic equilibrium calculations were made to evaluate potential problems with slagging based on the ash content prior to the combustion experiments. The fuels were introduced as a reference case with only demolition wood and pre-blended fuel mixtures in two ratios; 65 w/w-% DWC/35 w/w-% MSS and 55 w/w-% DWC/45 w/w-% MSS and were fired for 12 hours. The high water content of the MSS affected how much MSS that could be introduced without compromising the heat and power production.The fuel blends worked nicely for 12 hours of continuous combustion with small adjustments where the primarily the air inlet configuration was changed. The main problems encountered related to cleaning of the flue gases and to some extent ash removal. The bed ash and fly ash produced was analysed both using ICP-AES (elemental) and XRD (speciation) and the bottom ash was subjected to ash melting tests. The major nutrient phosphorus was mainly found in bottom ash (80 w/w-%) as whitlockites with some hydroxyapatite whereas fly ash (20 w/w-%) contained larger amounts of hydroxyapatite, especially for the reference fuel. The amou...
Sulfur recirculation is a new technology for reducing boiler corrosion and dioxin formation. It was demonstrated in full-scale tests at a Waste to Energy plant in Göteborg (Sweden) during nearly two months of operation. Sulfur was recirculated as sulfuric acid from the flue gas cleaning back to the boiler, thus creating a sulfur loop. The new technology was evaluated by extensive measurement campaigns during operation under normal conditions (reference case) and operation with sulfur recirculation. The chlorine content of both fly ash and boiler ash decreased and the sulfur content increased during the sulfur recirculation tests. The deposit growth and the particle concentration decreased with sulfur recirculation and the dioxin concentration (I-TEQ) of the flue gas was reduced by approximately 25%. Sulfuric acid dew point measurements showed that the sulfuric acid dosage did not lead to elevated SO3 concentrations, which may otherwise induce low temperature corrosion. In the sulfur recirculation corrosion probe exposures, the corrosion rate decreased for all tested materials (16Mo3, Sanicro 28 and Inconel 625) and material temperatures (450 °C and 525 °C) compared to the reference exposure. The corrosion rates were reduced by 60-90%. Sulfur recirculation prevented the formation of transition metal chlorides at the metal/oxide interface, formation of chromate and reduced the presence of zinc in the corrosion products. Furthermore, measured corrosion rates at 525 °C with sulfur recirculation in operation were similar or lower compared to those measured at 450 °C material temperature in reference conditions, which corresponds to normal operation at normal steam temperatures. This implies that sulfur recirculation allows for higher steam data and electricity production without increasing corrosion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.