Glioblastoma Multiforme (GBM) is the most malignant brain tumor occurring in adults, while the HER2-positive breast cancer (BC) brain metastasis is a frequent secondary brain tumor. The blood brain barrier...
The vault nanoparticle is a eukaryotic assembly consisting of 78 copies of the 99-kDa major vault protein. They generate two cup-shaped symmetrical halves, which in vivo enclose protein and RNA molecules. Overall, this assembly is mainly involved in pro-survival and cytoprotective functions. It also holds a remarkable biotechnological potential for drug/gene delivery, thanks to its huge internal cavity and the absence of toxicity/immunogenicity. The available purification protocols are complex, partly because they use higher eukaryotes as expression systems. Here, we report a simplified procedure that combines human vault expression in the yeast Komagataella phaffii, as described in a recent report, and a purification process we have developed. This consists of RNase pretreatment followed by size-exclusion chromatography, which is far simpler than any other reported to date. Protein identity and purity was confirmed by SDS-PAGE, Western blot and transmission electron microscopy. We also found that the protein displayed a significant propensity to aggregate. We thus investigated this phenomenon and the related structural changes by Fourier-transform spectroscopy and dynamic light scattering, which led us to determine the most suitable storage conditions. In particular, the addition of either trehalose or Tween-20 ensured the best preservation of the protein in native, soluble form.
The interaction between tumor cells and activated fibroblasts determines malignant features of desmoplastic carcinomas such as rapid growth, progression towards a metastatic phenotype, and resistance to chemotherapy. On one hand, tumor cells can activate normal fibroblasts and even reprogram them into CAFs through complex mechanisms that also involve soluble factors. Among them, transforming growth factor beta (TGF-β) and Platelet-Derived Growth Factor (PDGF) have an established role in the acquisition of pro-tumorigenic phenotypes by fibroblasts. On the other hand, activated fibroblasts release Interleukin-6 (IL-6), which increases tumor-cell invasiveness and chemoresistance. However, the interplay between breast cancer cells and fibroblasts, as well as the modes of action of TGF-β, PDGF, and IL-6, are difficult to investigate in vivo. Here, we validated the usage of advanced cell culture models as tools to study the interplay between mammary tumor cells and fibroblasts, taking mouse and human triple-negative tumor cells and fibroblasts as a case study. We employed two different settings, one permitting only paracrine signaling, the other both paracrine and cell-contact-based signaling. These co-culture systems allowed us to unmask how TGF-β, PDGF and IL-6 mediate the interplay between mammary tumor cells and fibroblasts. We found that the fibroblasts underwent activation induced by the TGF-β and the PDGF produced by the tumor cells, which increased their proliferation and IL-6 secretion. The IL-6 secreted by activated fibroblasts enhanced tumor-cell proliferation and chemoresistance. These results show that these breast cancer avatars possess an unexpected high level of complexity, which resembles that observed in vivo. As such, advanced co-cultures provide a pathologically relevant tractable system to study the role of the TME in breast cancer progression with a reductionist approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.