Protein identification and peptide sequencing by tandem mass spectrometry requires knowledge of how peptides fragment in the gas phase, specifically which bonds are broken and where the charge(s) resides in the products. For many peptides, cleavage at the amide bonds dominate, producing a series of ions that are designated b and y. For other peptides, enhanced cleavage occurs at just one or two amino acid residues. Surface-induced dissociation, along with gas-phase collision-induced dissociation performed under a variety of conditions, has been used to refine the general 'mobile proton' model and to determine how and why enhanced cleavages occur at aspartic acid residues and protonated histidine residues. Enhanced cleavage at acidic residues occurs when the charge is unavailable to the peptide backbone or the acidic side-chain. The acidic H of the side-chain then serves to initiate cleavage at the amide bond immediately C-terminal to Asp (or Glu), producing an anhydride. In contrast, enhanced cleavage occurs at His when the His side-chain is protonated, turning His into a weak acid that can initiate backbone cleavage by transferring a proton to the backbone. This allows the nucleophilic nitrogen of the His side-chain to attack and form a cyclic structure that is different from the 'typical' backbone cleavage structures.
Collision-induced dissociation (CID) is a common ion activation technique used to energize massselected peptide ions during tandem mass spectrometry. Characteristic fragment ions form from the cleavage of amide bonds within a peptide undergoing CID, allowing the inference of its amino acid sequence. The statistical characterization of these fragment ions is essential for improving peptide identification algorithms and for understanding the complex reactions taking place during CID. An examination of 1465 ion trap spectra from doubly charged tryptic peptides reveals several trends important to understanding this fragmentation process. While less abundant than y ions, b ions are present in sufficient numbers to aid sequencing algorithms. Fragment ions exhibit a characteristic series-specific relationship between their masses and intensities. Each residue influences fragmentation at adjacent amide bonds, with Pro quantifiably enhancing cleavage at its N-terminal amide bond and His increasing the formation of b ions at its C-terminal amide bond. Fragment ions corresponding to a formal loss of ammonia appear preferentially in peptides containing Gln and Asn. These trends are partially responsible for the complexity of peptide tandem mass spectra.Tandem mass spectrometry (MS/MS) of peptides is a central technology for proteomics, enabling the identification of thousands of peptides from a complex mixture. [1][2][3][4] This increasingly widespread technique relies upon the fragmentation of peptides by collisioninduced dissociation (CID), but the chemistry behind the fragmentation process is complex and not comprehensively understood. [5][6][7][8] Peptides undergo CID after they are isolated from other ions by their mass-to-charge (m/z) ratios. Peptides in an acidic solution are introduced to the vacuum of the mass spectrometer via electrospray ionization. 9 The peptide ions are accelerated during CID, leading to more energetic collisions with the ion trap's inert gas molecules. The mobile proton model 10 describes how the added internal energy causes the ionizing proton(s) on each peptide to transfer intramolecularly until one destabilizes a peptide bond, resulting in the cleavage of that bond and the production of two fragments. While more energetic techniques may cleave many classes of bonds within the peptide structure, low-energy CID preferentially breaks the amide bonds. Once the fragment ions are produced, the mass spectrometer records their m/z ratios in a tandem mass spectrum.Determining the sequence of a peptide from its tandem spectrum is complicated by the variety and variability of the fragment ions produced. Cleavage of amide bonds results in b and y Figure 1). b ions may fragment further to produce a ions. 13 If only these three ions were produced for every amide bond in a 10-residue peptide, the fragment ion spectrum would contain 27 peaks. This ideal spectrum differs from experimental spectra as a result of several causes. First, a subset of the expected fragment ions may not be present. Second...
Fragmentation at the Xxx-Pro bond was analyzed for a group of peptide mass spectra that were acquired in a Finnigan ion trap mass spectrometer and were generated from proteins digested by enzymes and identified by the Sequest algorithm. Cleavage with formation of a + b + y ions occurred more readily at the Xxx-Pro bond than at other locations in these peptides, and the importance of this cleavage varied by the identity of Xxx. The most abundant Xxx-Pro relative bond cleavage ratios were observed when Xxx was Val, His, Asp, Ile, and Leu, whereas the least abundant cleavage ratios occurred when Xxx was Gly or Pro. Rationalization for these cleavage ratios at Xxx-Pro may include contribution of the Asp or His side chain to enhanced cleavage or the conformation of Pro, Gly, and the aliphatic residues Val, Ile, and Leu at the Xxx location in the Xxx-Pro bond. Although unusual fragmentation behavior has been noted for Pro-containing peptides, this analysis suggests that fragmentation at the Xxx-Pro bond is predictable and that this information may be used to improve the identification of proteins if it is incorporated into peptide sequencing algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.