Background In this study we evaluated the incidence of invasive pulmonary aspergillosis among intubated patients with critical coronavirus disease 2019 (COVID-19) and evaluated different case definitions of invasive aspergillosis. Methods Prospective, multicentre study on adult patients with microbiologically confirmed COVID-19 receiving mechanical ventilation. All included participants underwent screening protocol for invasive pulmonary aspergillosis with bronchoalveolar lavage galactomannan and cultures performed on admission at 7 days and in case of clinical deterioration. Cases were classified as coronavirus associated pulmonary aspergillosis (CAPA) according to previous consensus definitions. The new definition was compared with putative invasive pulmonary aspergillosis (PIPA). Results A total of 108 patients were enrolled. Probable CAPA was diagnosed in 30 (27.7%) of patients after a median of 4 (2-8) days from intensive care unit (ICU) admission. Kaplan-Meier curves showed a significant higher 30-day mortality rate from ICU admission among patients with either CAPA (44% vs 19%, p= 0.002) or PIPA (74% vs 26%, p<0.001) when compared with patients not fulfilling criteria for aspergillosis. The association between CAPA [OR 3.53 (95%CI 1.29-9.67), P=0.014] or PIPA [OR 11.60 (95%CI 3.24-41.29) p<0.001] with 30-day mortality from ICU admission was confirmed even after adjustment for confounders with a logistic regression model. Among patients with CAPA receiving voriconazole treatment (13 patients, 43%) A trend toward lower mortality (46% vs 59% p=0.30) and reduction of galactomannan index in consecutive samples was observed. Conclusion We found a high incidence of CAPA among critically ill COVID-19 patients and that its occurrence seems to change the natural history of disease
Background A growing body of observational evidence supports the value of ceftazidime-avibactam (CAZ-AVI) in managing infections caused by carbapenem-resistant Enterobacteriaceae (CRE). Methods We retrospectively analyzed observational data on the use and outcomes of CAZ-AVI therapy for infections caused by KPC-producing K. pneumoniae (KPC-Kp) strains. Multivariate regression analysis was used to identify variables independently associated with 30-day mortality. Results were adjusted for propensity score for receipt of CAZ-AVI combination regimens vs. CAZ-AVI monotherapy. Results The cohort comprised 577 adults with bloodstream infections (BSIs) (n=391) or non-bacteremic infections (nBSIs) involving mainly the urinary tract, lower respiratory tract, intra-abdominal structures. All received treatment with CAZ-AVI alone (n=165) or with one or more other active antimicrobials (n=412). The all-cause mortality rate 30 days after infection onset was 25% (146/577). There was no statistically significant difference in mortality between patients managed with CAZ-AVI alone and those treated with combination regimens (26.1% vs. 25.0%, P=0.79). In multivariate analysis, mortality was positively associated with the presence at infection onset of septic shock (P=0.002), neutropenia (P <0.001), or an INCREMENT score >8 (P=0.01); with LRTI (P=0.04); and with CAZ-AVI dose adjustment for renal function (P=0.01). Mortality was negatively associated with CAZ-AVI administration by prolonged infusion (P=0.006). All associations remained significant after propensity score adjustment. Conclusions CAZ-AVI is an important option for treating serious KPC-Kp infections, even when used alone. Further study is needed to explore the drug’s seemingly more limited efficacy in LRTIs and the potential survival benefits of prolonging CAZ-AVI infusions to 3 hours or more.
The primary objective of this multicenter, observational, retrospective study was to assess the incidence rate of ventilator-associated pneumonia (VAP) in coronavirus disease 2019 (COVID-19) patients in intensive care units (ICU). The secondary objective was to assess predictors of 30-day case-fatality of VAP. From 15 February to 15 May 2020, 586 COVID-19 patients were admitted to the participating ICU. Of them, 171 developed VAP (29%) and were included in the study. The incidence rate of VAP was of 18 events per 1000 ventilator days (95% confidence intervals [CI] 16–21). Deep respiratory cultures were available and positive in 77/171 patients (45%). The most frequent organisms were Pseudomonas aeruginosa (27/77, 35%) and Staphylococcus aureus (18/77, 23%). The 30-day case-fatality of VAP was 46% (78/171). In multivariable analysis, septic shock at VAP onset (odds ratio [OR] 3.30, 95% CI 1.43–7.61, p = 0.005) and acute respiratory distress syndrome at VAP onset (OR 13.21, 95% CI 3.05–57.26, p < 0.001) were associated with fatality. In conclusion, VAP is frequent in critically ill COVID-19 patients. The related high fatality is likely the sum of the unfavorable prognostic impacts of the underlying viral and the superimposed bacterial diseases.
Objectives We aimed to develop and validate a risk score to predict severe respiratory failure (SRF) among patients hospitalized with coronavirus disease-2019 (COVID-19). Methods We performed a multicentre cohort study among hospitalized (>24 hours) patients diagnosed with COVID-19 from 22 February to 3 April 2020, at 11 Italian hospitals. Patients were divided into derivation and validation cohorts according to random sorting of hospitals. SRF was assessed from admission to hospital discharge and was defined as: Sp o 2 <93% with 100% Fi o 2 , respiratory rate >30 breaths/min or respiratory distress. Multivariable logistic regression models were built to identify predictors of SRF, β-coefficients were used to develop a risk score. Trial Registration NCT04316949 . Results We analysed 1113 patients (644 derivation, 469 validation cohort). Mean (±SD) age was 65.7 (±15) years, 704 (63.3%) were male. SRF occurred in 189/644 (29%) and 187/469 (40%) patients in the derivation and validation cohorts, respectively. At multivariate analysis, risk factors for SRF in the derivation cohort assessed at hospitalization were age ≥70 years (OR 2.74; 95% CI 1.66–4.50), obesity (OR 4.62; 95% CI 2.78–7.70), body temperature ≥38°C (OR 1.73; 95% CI 1.30–2.29), respiratory rate ≥22 breaths/min (OR 3.75; 95% CI 2.01–7.01), lymphocytes ≤900 cells/mm 3 (OR 2.69; 95% CI 1.60–4.51), creatinine ≥1 mg/dL (OR 2.38; 95% CI 1.59–3.56), C-reactive protein ≥10 mg/dL (OR 5.91; 95% CI 4.88–7.17) and lactate dehydrogenase ≥350 IU/L (OR 2.39; 95% CI 1.11–5.11). Assigning points to each variable, an individual risk score (PREDI-CO score) was obtained. Area under the receiver-operator curve was 0.89 (0.86–0.92). At a score of >3, sensitivity, specificity, and positive and negative predictive values were 71.6% (65%–79%), 89.1% (86%–92%), 74% (67%–80%) and 89% (85%–91%), respectively. PREDI-CO score showed similar prognostic ability in the validation cohort: area under the receiver-operator curve 0.85 (0.81–0.88). At a score of >3, sensitivity, specificity, and positive and negative predictive values were 80% (73%–85%), 76% (70%–81%), 69% (60%–74%) and 85% (80%–89%), respectively. Conclusion PREDI-CO score can be useful to allocate resources and prioritize treatments during the COVID-19 pandemic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.