Rhizosphere colonization is one of the first steps in the pathogenesis of soilborne microorganisms. It can also be crucial for the action of microbial inoculants used as biofertilizers, biopesticides, phytostimulators, and bioremediators. Pseudomonas, one of the best root colonizers, is therefore used as a model root colonizer. This review focuses on (a) the temporal-spatial description of root-colonizing bacteria as visualized by confocal laser scanning microscopal analysis of autofluorescent microorganisms, and (b) bacterial genes and traits involved in root colonization. The results show a strong parallel between traits used for the colonization of roots and of animal tissues, indicating the general importance of such a study. Finally, we identify several noteworthy areas for future research.
The phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 controls tomato foot and root rot caused by Fusarium oxysporum f. sp. radicislycopersici. To test whether root colonization is required for biocontrol, mutants impaired in the known colonization traits motility, prototrophy for amino acids, or production of the site-specific recombinase, Sss/XerC were tested for their root tip colonization and biocontrol abilities. Upon tomato seedling inoculation, colonization mutants of strain PCL1391 were impaired in root tip colonization in a gnotobiotic sand system and in potting soil. In addition, all mutants were impaired in their ability to control tomato foot and root rot, despite the fact that they produce wild-type levels of phenazine-1-carboxamide, the antifungal metabolite previously shown to be required for biocontrol. These results show, for what we believe to be the first time, that root colonization plays a crucial role in biocontrol, presumably by providing a delivery system for antifungal metabolites. The ability to colonize and produce phenazine-1-carboxamide is essential for control of F. oxysporum f. sp. radicis-lycopersici. Furthermore, there is a notable overlap of traits identified as being important for colonization of the rhizosphere and animal tissues.
We describe the characterization of a novel Tn5lacZ colonization mutant of the efficiently colonizing Pseudomonas fluorescens strain WCS365, mutant strain PCL1210, which is at least 300- to 1,000-fold impaired in colonization of the potato root tip after co-inoculation of potato stem cuttings with a 1:1 mixture of mutant and parental cells. Similarly, the mutant is also impaired in colonization of tomato, wheat, and radish, indicating that the gene involved plays a role in the ability of P. fluorescens WCS365 to colonize a wide range of plant species. A 3.1-kb DNA fragment was found to be able to complement the observed mutation. The nucleotide sequence of the region around the Tn5lacZ insertion showed three open reading frames (ORFs). The transcriptional start site was determined. The operon is preceded by an integration host factor (IHF) binding site consensus sequence whereas no clear -10 and -35 sequences are present. The deduced amino acid sequences of the first two genes of the operon, designated as colR and colS, show strong similarity with known members of two-component regulatory systems. ColR has homology with the response regulators of the OmpR-PhoB subclass whereas ColS, the product of the gene in which the mutation resides, shows similarity to the sensor kinase members of these two-component systems. Hydrophobicity plots show that this hypothetical sensor kinase has two transmembrane domains, as is also known for other sensor kinases. The product of the third ORF, Orf222, shows no homology with known proteins. Only part of the orf222 gene is present in the colonization-complementing, 3.1-kb region, and it therefore does not play a role in complementation. No experimental evidence for a role of the ColR/ColS two-component system in the suspected colonization traits chemotaxis and transport of exudate compounds could be obtained. The function of this novel two-component system therefore remains to be elucidated. We conclude that colonization is an active process in which an environmental stimulus, through this two-component system, activates a so far unknown trait that is crucial for colonization.
A colonization mutant of the efficient rootcolonizing biocontrol strain Pseudomonas fluorescens WCS365 is described that is impaired in competitive root-tip colonization of gnotobiotically grown potato, radish, wheat, and tomato, indicating a broad host range mutation. The colonization of the mutant is also impaired when studied in potting soil, suggesting that the defective gene also plays a role under more natural conditions. A DNA fragment that is able to complement the mutation for colonization revealed a multicistronic transcription unit composed of at least six ORFs with similarity to lppL, lysA, dapF, orf235͞233, xerC͞sss, and the largely incomplete orf238. The transposon insertion in PCL1233 appeared to be present in the orf235͞233 homologue, designated orf240. Introduction of a mutation in the xerC͞sss homologue revealed that the xerC͞sss gene homologue rather than orf240 is crucial for colonization. xerC in Escherichia coli and sss in Pseudomonas aeruginosa encode proteins that belong to the integrase family of site-specific recombinases, which play a role in phase variation caused by DNA rearrangements. The function of the xerC͞sss homologue in colonization is discussed in terms of genetic rearrangements involved in the generation of different phenotypes, thereby allowing a bacterial population to occupy various habitats. Mutant PCL1233 is assumed to be locked in a phenotype that is not well suited to compete for colonization in the rhizosphere. Thus we show the importance of phase variation in microbe-plant interactions.The use of microorganisms, including fluorescent Pseudomonas spp., to protect plants against soil-borne diseases is an alternative for the use of chemical pesticides. The biocontrol activity of these strains usually results from the production of one or more antifungal factors. The application of fluorescent Pseudomonas spp. and other plant-growth-promoting rhizobacteria is hampered by inconsistency of performance in the field (1, 2). Although the mechanisms underlying biocontrol are complex and diverse, the need to bring the plant-growthpromoting rhizobacteria cells and their antifungal factors to the right sites at the right time is universal. The importance of this process, designated as root colonization, is underscored in two studies. Schippers et al. (1) showed that inadequate colonization leads to decreased biocontrol activity, and Bull et al. (3) reported an inverse relation between the number of bacteria present on the wheat root and the number of take-all lesions seen on the plant. For these and other reasons, root colonization is often considered the limiting factor for biocontrol in the rhizosphere (1, 2).Two approaches were used in our laboratory to identify traits involved in root colonization. The first approach is to guess which traits are involved in colonization, isolate mutants in these traits, and then test these mutants for colonization in competition with the parental strain. With this approach, motility (4) and synthesis of the O-antigen of lipopolysa...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.