Mechanical equation-of-state data of initially liquid and solid CO2 shock-compressed to terapascal conditions are reported. Diamond-sapphire anvil cells were used to vary the initial density and state of CO2 samples that were then further compressed with laser-driven shock waves, resulting in a data set from which precise derivative quantities, including Grüneisen parameter and sound speed, are determined. Reshock states are measured to 800 GPa and map the same pressure-density conditions as the single shock using different thermodynamic paths. The compressibility data reported here do not support current density-functional-theory calculations, but are better represented by tabular equation-of-state models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.