Four multiparous Holstein cows were used in a 4 x 4 Latin square to investigate the effects of protein concentration, degradability, and quality on plasma urea concentration and milk N constituents. Diets varied in the amount and proportion of RDP and RUP relative to NRC requirements: diet 1, excessive RDP, deficient RUP; diets 2 and 3, balanced for RDP and RUP; and diet 4, excessive RDP, balanced for RUP. Diet 3 was formulated for optimal AA balance as predicted by the Cornell Net Carbohydrate and Protein System. Diets contained 34% corn silage, 19% alfalfa haylage, and 49% concentrate (DM basis). Concentrates varied in amounts of urea and soybean, corn gluten, and fish and blood meals. Concentrations of urea N and NPN in milk varied among diets: diet 1, 19 and 34 mg/dl; diet 2, 16 and 31 mg/dl; diet 3, 15 and 30 mg/dl; and diet 4, 23 and 39 mg/dl, respectively. Increases in NPN concentration were attributed to increases in the urea fraction of NPN. Intake of RUP and AA balance influenced milk true protein content; diet 1, 2.89%; diet 2, 2.90%; diet 3, 3.01%; and diet 4, 2.95%. the proportions of true protein and urea in milk are influenced by CP concentration, protein type, and protein quality.
The transition period in dairy cows refers to the period from 3 wk before calving to 3 wk post-calving and is a critical time for influencing milk production and cow health. We hypothesize that the ruminal microbiome shifts as dairy cows transition from a non-lactation period into lactation due to changes in dietary regimen. The purpose of this study was to identify differences in the ruminal microbiome of primiparous and multiparous (study group) cows during the transition period. Five primiparous and 5 multiparous cows were randomly selected from a herd, and ruminal contents were sampled, via stomach tube, 4 times (study day) at 3 wk before calving date (S1), 1 to 3 d post-calving (S2), and 4 (S3) and 8 wk (S4) into lactation and were evaluated for bacterial diversity using 16S pyrotags. Both groups received the same pre-fresh diet (14.6% CP, 44.0% NDF, 21.9% starch) and 3 different lactation diets (L1, L2, and L3) varying in forage base but not amount and formulated to have similar nutrient specifications (16.8% to 17.7% CP; 32.5% to 33.6% NDF; 26.2% to 29.1% starch) post-calving. Forty bacterial communities were analyzed on the basis of annotations of 100,000 reads, resulting in 15,861 operational taxonomic units grouped into 17 bacterial phyla. The UniFrac distance metric revealed that both study group and study day had an effect on the community compositions (P < 0.05; permutational multivariate ANOVA test). The most abundant phyla observed were Bacteroidetes and Firmicutes across all the communities. As the cows transitioned into lactation, the ratio of Bacteroidetes to Firmicutes increased from 6:1 to 12:1 (P < 0.05; Mann-Whitney U test), and this ratio was greater in primiparous cows than in multiparous cows (P < 0.05). This report is the first to explore the effect of parity on dynamics in the ruminal microbiome of cows during the transition period.
Antibiotic use data are critical for drawing conclusions about the epidemiological connections between antibiotic use in farms animals, antibiotic resistance, animal health, and human health. The goal of this study was to quantitatively and qualitatively characterize antibiotic use on dairy farms in Pennsylvania, the state with second largest number of dairy farms nationally. A survey was sent to 10% of the 6,580 dairy farms registered in Pennsylvania and completed by 235 producers (response rate of 36%). Data on antibiotic use in the previous month and in the previous 6 mo were collected based on farmer self-report, using either recall or treatment records. Two metrics were used to quantify antibiotic consumption: animal-defined daily doses (ADD) and days of therapy (DOT), a metric used in human medicine for purposes of antimicrobial stewardship. Across all farms, 24,444 ADD and 19,029 DOT were reported, representing treatment incidences of 4.2 ADD/1,000 animal-days and 3.3 DOT/1,000 animal-days. These rates were generally lower than those found in other states and countries. The main indication for antibiotic use was mastitis, and firstgeneration cephalosporins were the most commonly used class of antibiotic for all indications, followed by penicillins and third-generation cephalosporins. Trends in use were similar for ADD and DOT, but the numbers of recorded DOT and associated treatment incidences were generally lower than the number of ADD and associated treatment incidences. Rates of treatment were significantly associated with herd size. This study is the first to quantify antibiotic use on dairy farms in Pennsylvania and the first to use the DOT metric in a dairy setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.