SUMMARY
GpsB regulatory protein and StkP protein kinase have been proposed as molecular switches that balance septal and peripheral (side-wall like) peptidoglycan (PG) synthesis in Streptococcus pneumoniae (pneumococcus); yet, mechanisms of this switching remain unknown. We report that ΔdivIVA mutations are not epistatic to ΔgpsB division-protein mutations in progenitor D39 and related genetic backgrounds; nor is GpsB required for StkP localization or FDAA labeling at septal division rings. However, we confirm that reduction of GpsB amount leads to decreased protein phosphorylation by StkP and report that the essentiality of ΔgpsB mutations is suppressed by inactivation of PhpP protein phosphatase, which concomitantly restores protein phosphorylation levels. ΔgpsB mutations are also suppressed by other classes of mutations, including one that eliminates protein phosphorylation and may alter division. Moreover, ΔgpsB mutations are synthetically lethal with Δpbp1a, but not Δpbp2a or Δpbp1b mutations, suggesting GpsB activation of PBP2a activity. Consistent with this result, co-IP experiments showed that GpsB complexes with EzrA, StkP, PBP2a, PBP2b, and MreC in pneumococcal cells. Furthermore, depletion of GpsB prevents PBP2x migration to septal centers. These results support a model in which GpsB negatively regulates peripheral PG synthesis by PBP2b and positively regulates septal ring closure through its interactions with StkP-PBP2x.
How bacteria control proper septum placement at midcell, to guarantee the generation of identical daughter cells, is still largely unknown. Although different systems involved in the selection of the division site have been described in selected species, these do not appear to be widely conserved. Here, we report that LocZ (Spr0334), a newly identified cell division protein, is involved in proper septum placement in Streptococcus pneumoniae. We show that locZ is not essential but that its deletion results in cell division defects and shape deformation, causing cells to divide asymmetrically and generate unequally sized, occasionally anucleated, daughter cells. LocZ has a unique localization profile. It arrives early at midcell, before FtsZ and FtsA, and leaves the septum early, apparently moving along with the equatorial rings that mark the future division sites. Consistently, cells lacking LocZ also show misplacement of the Z-ring, suggesting that it could act as a positive regulator to determine septum placement. LocZ was identified as a substrate of the Ser/Thr protein kinase StkP, which regulates cell division in S. pneumoniae. Interestingly, homologues of LocZ are found only in streptococci, lactococci, and enterococci, indicating that this close phylogenetically related group of bacteria evolved a specific solution to spatially regulate cell division.
BackgroundReversible protein phosphorylation catalyzed by protein kinases and phosphatases is the primary mechanism for signal transduction in all living organisms. Streptococcus pneumoniae encodes a single Ser/Thr protein kinase, StkP, which plays a role in virulence, stress resistance and the regulation of cell wall synthesis and cell division. However, the role of its cognate phosphatase, PhpP, is not well defined.ResultsHere, we report the successful construction of a ΔphpP mutant in the unencapsulated S. pneumoniae Rx1 strain and the characterization of its phenotype. We demonstrate that PhpP negatively controls the level of protein phosphorylation in S. pneumoniae both by direct dephosphorylation of target proteins and by dephosphorylation of its cognate kinase, StkP. Catalytic inactivation or absence of PhpP resulted in the hyperphosphorylation of StkP substrates and specific phenotypic changes, including sensitivity to environmental stresses and competence deficiency. The morphology of the ΔphpP cells resembled the StkP overexpression phenotype and conversely, overexpression of PhpP resulted in cell elongation mimicking the stkP null phenotype. Proteomic analysis of the phpP knock-out strain permitted identification of a novel StkP/PhpP substrate, Spr1851, a putative RNA-binding protein homologous to Jag. Here, we show that pneumococcal Jag is phosphorylated on Thr89. Inactivation of jag confers a phenotype similar to the phpP mutant strain.ConclusionsOur results suggest that PhpP and StkP cooperatively regulate cell division of S. pneumoniae and phosphorylate putative RNA binding protein Jag.Electronic supplementary materialThe online version of this article (doi:10.1186/s12866-016-0865-6) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.