Fossilized fungal hyphae and spores from the Ordovician of Wisconsin (with an age of about 460 million years) strongly resemble modern arbuscular mycorrhizal fungi (Glomales, Zygomycetes). These fossils indicate that Glomales-like fungi were present at a time when the land flora most likely only consisted of plants on the bryophytic level. Thus, these fungi may have played a crucial role in facilitating the colonization of land by plants, and the fossils support molecular estimates of fungal phylogeny that place the origin of the major groups of terrestrial fungi (Ascomycota, Basidiomycota, and Glomales) around 600 million years ago.
Plants (land plants, embryophytes) are of monophyletic origin from a freshwater ancestor that, if still extant, would be classified among the charophycean green algae. Plants, but not charophyceans, possess a life history involving alternation of two morphologically distinct developmentally associated bodies, sporophyte and gametophyte. Body plan evolution in plants has involved fundamental changes in the forms of both gametophyte and sporophyte and the evolutionary origin of regulatory systems that generate different body plans in sporophytes and gametophytes of the same species. Comparative analysis, based on molecular phylogenetic information, identifies fundamental body plan features that originated during radiation of charophycean algae and were inherited by plants. These include, in probable evolutionary order: cellulosic cell wall, multicellular body, cytokinetic phragmoplast, plasmodesmata, apical meristematic cell, apical cell proliferation (branching), threedimensional tissues, asymmetric cell division, cell specialization capacity, zygote retention, and placenta. Body plan features whose origin is linked to the dawn of plants include: multicellular sporophyte body, histogenetic apical meristem in the gametophyte body, and capacity for tissue differentiation in both sporophyte and gametophyte. Origin of a well-defined sporophytic apical stem cell and a system for its proliferation, correlated with capacity for organ production and branching, occurred sometime between the divergence of modern bryophytes and vascular plant lineages. Roots and their meristem and a multilayered tunica-corpus shoot apical meristem arose later. Regulatory genes affecting shoot meristems, which have been detected by analysis of higher plant mutants, may be relevant to understanding early plant body plan transitions.Fundamental aspects of the plant body plan are remarkably consistent within the plant kingdom and are different from metazoans. All plants exhibit at least one form of apical meristem consisting of one or more cells that are functionally analogous to metazoan stem cells because they are histogenetic, i.e., able to generate specialized tissues. Plants differ from animals in that the plant apical meristem has the additional capability to generate organs (leaves and stem) and reproductive organ systems (cones or flowers) throughout the life of the plant, whereas the number and form of metazoan organs are embryonically determined. Plants are often described as having a ''modular construction'' that allows flexibility in organ production in response to changes in environmental conditions. Plants also differ from animals in that the plant sexual life history involves an alternation of two multicellular bodies (sporophyte and gametophyte) that are morphologically different and have changed differently through time. Thus the body plans of these two life history phases have taken separate evolutionary pathways (Fig. 1).That a simple single-celled histogenetic apical meristem (Fig. 2) appeared very early in plant evolution ...
Unusual cell wall structure and resistance to microbial degradation led to an investigation of resistant biopolymers in Coleochaete (Chlorophyta, class Charophyceae), a green alga on the evolutionary lineage that led to land plants. In Coleochaete that are undergoing sexual reproduction, vegetative cell walls contain material similar to lignin, a substance generally thought absent from green algae, and the zygote wall includes sporopollenin. Knowledge of chemically resistant compounds in Coleochaete may facilitate interpretation of the fossil record. Placental transfer cells in Coleochaete orbicularis and in the hornwort Anthoceros survive acetolysis and contain lignin-like compounds, implying a close relation between these taxa.
Isoprene emission has been documented and characterized from species in all major groups of vascular plants. We report in our survey that isoprene emission is much more common in mosses and ferns than later divergent land plants but is absent in liverworts and hornworts. The light and temperature responses of isoprene emission from Sphagnum capillifolium (Ehrh.) Hedw. are similar to those of other land plants. Isoprene increases thermotolerance of S. capillifolium to the same extent seen in higher plants as measured by chlorophyll fluorescence. Sphagnum species in a northern Wisconsin bog experienced large temperature fluctuations similar to those reported in tree canopies. Since isoprene has been shown to help plants cope with large, rapid temperature fluctuations, we hypothesize the thermal and correlated dessication stress experienced by early land plants provided the selective pressure for the evolution of light-dependent isoprene emission in the ancestors of modern mosses. As plants radiated into different habitats, this capacity was lost multiple times in favor of other thermal protective mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.