With a similar amount of total weight loss, lean mass is preserved, but there is not a preferential loss of abdominal fat when either moderate- or vigorous-intensity aerobic exercise is performed during caloric restriction. This trial was registered at (ClinicalTrials.gov) as: NCT00664729.
Previous studies reveal that supplementation of human diets with gamma-linolenic acid (GLA) reduces the generation of lipid mediators of inflammation and attenuates clinical symptoms of chronic inflammatory disorders such as rheumatoid arthritis. However, we have shown that supplementation with this same fatty acid also causes a marked increase in serum arachidonate (AA) levels, a potentially harmful side effect. The objective of this study was to design a supplementation strategy that maintained the capacity of GLA to reduce lipid mediators without causing elevations in serum AA levels. Initial in vitro studies utilizing HEP-G2 liver cells revealed that addition of eicosapentaenoic acid (EPA) blocked Delta-5-desaturase activity, the terminal enzymatic step in AA synthesis. To test the in vivo effects of a GLA and EPA combination in humans, adult volunteers consuming controlled diets supplemented these diets with 3.0 g/d of GLA and EPA. This supplementation strategy significantly increased serum levels of EPA, but did not increase AA levels. EPA and the elongation product of GLA, dihomo-gamma-linolenic acid (DGLA) levels in neutrophil glycerolipids increased significantly during the 3-wk supplementation period. Neutrophils isolated from volunteers fed diets supplemented with GLA and EPA released similar quantities of AA, but synthesized significantly lower quantities of leukotrienes compared with their neutrophils before supplementation. This study revealed that a GLA and EPA supplement combination may be utilized to reduce the synthesis of proinflammatory AA metabolites, and importantly, not induce potentially harmful increases in serum AA levels.
Purpose
Enteric colonization with Oxalobacter formigenes, a bacterium whose main energy source is oxalate, has been demonstrated to decrease the risk of recurrent calcium oxalate kidney stone formation. We assessed the impact of diets controlled in calcium and oxalate contents on urinary and fecal analytes in healthy subjects who were naturally colonized with O. formigenes or not colonized with O. formigenes.
Materials and Methods
A total of 11 O. formigenes colonized and 11 noncolonized subjects were administered diets controlled in calcium and oxalate contents. We assayed 24-hour urine collections and stool samples obtained on the last 4 days of each 1-week diet for stone risk parameters and O. formigenes levels. Mixed model analysis was used to determine the effects of colonization status on these variables.
Results
Urinary calcium and oxalate excretion were significantly altered by the dietary changes in O. formigenes colonized and noncolonized individuals. Mixed model analysis showed significant interaction between colonization status and oxalate excretion on a low calcium (400 mg daily)/moderate oxalate (250 mg daily) diet (p = 0.026). Urinary oxalate excretion was 19.5% lower in O. formigenes colonized subjects than in noncolonized subjects on the low calcium/moderate oxalate diet (mean ± SE 34.9 ± 2.6 vs 43.6 ± 2.6 mg, p = 0.031).
Conclusions
Results suggest that O. formigenes colonization decreases oxalate excretion during periods of low calcium and moderate oxalate intake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.