Extracellular adenosine has been widely implicated in adaptive responses to hypoxia. The generation of extracellular adenosine involves phosphohydrolysis of adenine nucleotide intermediates, and is regulated by the terminal enzymatic step catalyzed by ecto-5′-nucleotidase (CD73). Guided by previous work indicating that hypoxia-induced vascular leakage is, at least in part, controlled by adenosine, we generated mice with a targeted disruption of the third coding exon of Cd73 to test the hypothesis that CD73-generated extracellular adenosine functions in an innate protective pathway for hypoxia-induced vascular leakage. Cd73 −/− mice bred and gained weight normally, and appeared to have an intact immune system. However, vascular leakage was significantly increased in multiple organs, and after subjection to normobaric hypoxia (8% O2), Cd73 −/− mice manifested fulminant vascular leakage, particularly prevalent in the lung. Histological examination of lungs from hypoxic Cd73 −/− mice revealed perivascular interstitial edema associated with inflammatory infiltrates surrounding larger pulmonary vessels. Vascular leakage secondary to hypoxia was reversed in part by adenosine receptor agonists or reconstitution with soluble 5′-nucleotidase. Together, our studies identify CD73 as a critical mediator of vascular leakage in vivo.
Background— Ecto-5′-nucleotidase (CD73)–dependent adenosine generation has been implicated in tissue protection during acute injury. Once generated, adenosine can activate cell-surface adenosine receptors (A 1 AR, A 2A AR, A 2B AR, A 3 AR). In the present study, we define the contribution of adenosine to cardioprotection by ischemic preconditioning. Methods and Results— On the basis of observations of CD73 induction by ischemic preconditioning, we found that inhibition or targeted gene deletion of cd73 abolished infarct size-limiting effects. Moreover, 5′-nucleotidase treatment reconstituted cd73 −/− mice and attenuated infarct sizes in wild-type mice. Transcriptional profiling of adenosine receptors suggested a contribution of A 2B AR because it was selectively induced by ischemic preconditioning. Specifically, in situ ischemic preconditioning conferred cardioprotection in A 1 AR −/− , A 2A AR −/− , or A 3 AR −/− mice but not in A 2B AR −/− mice or in wild-type mice after inhibition of the A 2B AR. Moreover, A 2B AR agonist treatment significantly reduced infarct sizes after ischemia. Conclusions— Taken together, pharmacological and genetic evidence demonstrate the importance of CD73-dependent adenosine generation and signaling through A 2B AR for cardioprotection by ischemic preconditioning and suggests 5′-nucleotidase or A 2B AR agonists as therapy for myocardial ischemia.
CD73, originally defined as a lymphocyte differentiation antigen, is thought to function as a cosignaling molecule on T lymphocytes and an adhesion molecule that is required for lymphocyte binding to endothelium. We show here that CD73 is widely expressed on many tumor cell lines and is upregulated in cancerous tissues. Because the ecto-5′-nucleotidase activity of CD73 catalyzes AMP breakdown to immunosuppressive adenosine, we hypothesized that CD73-generated adenosine prevents tumor destruction by inhibiting antitumor immunity. We confirmed this hypothesis by showing that combining tumor CD73 knockdown and tumorspecific T-cell transfer cured all tumor-bearing mice. In striking contrast, there was no therapeutic benefit of adoptive T-cell immunotherapy in mice bearing tumors without CD73 knockdown. Moreover, blockade of the A2A adenosine receptor with a selective antagonist also augmented the efficacy of adoptive T-cell therapy. These findings identify a potential mechanism for CD73-mediated tumor immune evasion and point to a novel cancer immunotherapy strategy by targeting the enzymatic activity of tumor CD73. Cancer Res; 70(6); 2245-55. ©2010 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.