In the context of Industry 4.0, a growing use is being made of simulation-based decision-support tools commonly named Digital Twins. Digital Twins are replicas of the physical manufacturing assets, providing means for the monitoring and control of individual assets. Although extensive research on Digital Twins and their applications has been carried out, the majority of existing approaches are asset specific. Little consideration is made of human factors and interdependencies between different production assets are commonly ignored. In this paper, we address those limitations and propose innovations for cognitive modeling and co-simulation which may unleash novel uses of Digital Twins in Factories of the Future. We introduce a holistic Digital Twin approach, in which the factory is not represented by a set of separated Digital Twins but by a comprehensive modeling and simulation capacity embracing the full manufacturing process including external network dependencies. Furthermore, we introduce novel approaches for integrating models of human behavior and capacities for security testing with Digital Twins and show how the holistic Digital Twin can enable new services for the optimization and resilience of Factories of the Future. To illustrate this approach, we introduce a specific use-case implemented in field of Aerospace System Manufacturing.
For collaborative embedded systems, it is essential to consider not only the behavior of each system and the interaction between systems, but also the interaction of systems with their often dynamic and unknown context.In this chapter, we present a solution approach based on process building blocks— describing both the modelling approach as well as the model execution approach—for engineering and operation to achieve the goal of developing systems that deal with dynamics in their open context at runtime by re-using the models from the engineering phase.
When collaborative embedded systems (CESs) connect to form a group, this collaborative system group (CSG) can achieve goals that are beyond the reach of individual systems. The goals such a group can achieve depend on the constituent collaborative embedded systems. Consequently, the ability of a collaborative system group to adapt itself is driven by the capabilities of its collaborative embedded systems. This tight interconnection impedes the manual handling of adaptation strategies. Therefore, this chapter introduces a goal-based approach for strategy exploration that considers the peculiarities of collaborative system groups and collaborative embedded systems. The chapter sets out the model-based approach to adaptive system (group) design, incorporating the goals of collaborative system groups and individual systems, and outlines corresponding automated validation methods. We demonstrate the applicability of our approach for a case example of collaborative transport robots.
Production systems are changing in many aspects on the way to a Factory of the Future, including the level of automation and communication between components. Besides all benefits, this evolution raises the amount, effect and type of anomalies and unforeseen behavior to a new level of complexity. Thus, new detection and mitigation concepts are required. Based on a use-case dealing with a distributed transportation system for production environments, this paper describes the different sources of possible anomalies with the same effect, anomaly detection methods and related mitigation techniques. Depending on the identified anomaly, the FoF should react accordingly, such as fleet or AGV reconfiguration, strong authentication and access control or a deletion of adversarial noises. In this paper, different types of mitigation actions are described that support the fleet in overcoming the effect of the anomaly or preventing them in the future. A concept to select the most appreciate mitigation method is presented, where the detection of the correct source of the anomaly is key. This paper shows how various techniques can work together to gain a holistic view on anomalies in the Factory of the Future for selecting the most appropriate mitigation technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.