The method of acute tryptophan depletion (ATD), which reduces the availability of the essential amino acid tryptophan (TRP), the dietary serotonin (5-hydroxytryptamine (5-HT)) precursor, has been applied in many experimental studies. ATD application leads to decreased availability of TRP in the brain and its synthesis into 5-HT. It is therefore assumed that a decrease in 5-HT release and subsequent blunted neurotransmission is the underlying mechanism for the behavioural effects of ATD. However, direct evidence that ATD decreases extracellular 5-HT concentrations is lacking. Furthermore, several studies provide support for alternative underlying mechanisms of ATD. This may question the utility of the method as a selective serotonergic challenge tool. As ATD is extensively used for investigating the role of 5-HT in cognitive functions and psychiatric disorders, the potential of alternative mechanisms and possible confounding factors should be taken into account. It is suggested that caution is required when interpreting ATD effects in terms of a selective serotonergic effect.
Phosphodiesterase (PDE) inhibitors prevent the breakdown of the second messengers, cyclic AMP (cAMP) and cyclic GMP (cGMP), and are currently studied as possible targets for cognitive enhancement. Earlier studies indicated beneficial effects of PDE inhibitors in object recognition. In this study we tested the effects of three PDE inhibitors on spatial memory as assessed in a place and object recognition task. Furthermore, as both cAMP and cGMP are known vasodilators, the effects of PDE inhibition on cognitive functions could be explained by enhancement of cerebrovascular function. We examined this possibility by measuring the effects of PDE5 and PDE4 inhibitor treatment on local cerebral blood flow and glucose utilization in rats using [ 14 C]-iodoantipyrine and [ 14 C]-2-deoxyglucose quantitative autoradiography, respectively. In the spatial location task, PDE5 inhibition (cGMP) with vardenafil enhanced only early phase consolidation, PDE4 inhibition (cAMP) with rolipram enhanced only late phase consolidation, and PDE2 inhibition (cAMP and cGMP) with Bay 60-7550 enhanced both consolidation processes. Furthermore, PDE5 inhibition had no cerebrovascular effects in hippocampal or rhinal areas. PDE4 inhibition increased rhinal, but not hippocampal blood flow, whereas it decreased glucose utilization in both areas. In general, PDE5 inhibition decreased the ratio between blood flow and glucose utilization, indicative of general oligaemia; whereas PDE4 inhibition increased this ratio, indicative of general hyperemia. Both oligaemic and hyperemic conditions are detrimental for brain function and do not explain memory enhancement. These results underscore the specific effects of cAMP and cGMP on memory consolidation (object and spatial memory) and provide evidence that the underlying mechanisms of PDE inhibition on cognition are independent of cerebrovascular effects.
Acutely, 3,4,-methylenedioxymethamphetamine (MDMA) induces cerebrovascular dysfunction [Quate et al., (2004)Psychopharmacol., 173, 287-295]. In the longer term the same single dose results in depletion of 5-hydroxytrptamine (5-HT) nerve terminals. In this study we examined the cerebrovascular consequences of this persistent neurodegeneration, and the acute effects of subsequent MDMA exposure, upon the relationship that normally exists between local cerebral blood flow (LCBF) and local cerebral glucose utilization (LCMRglu). Dark agouti (DA) rats were pre-treated with 15 mg/kg i.p. MDMA or saline. Three weeks later, rats from each pre-treatment group were treated with an acute dose of MDMA (15 mg/kg i.p.) or saline. Quantitative autoradiographic imaging was used to measure LCBF or LCMRglu with [(14)C]-iodoantipyrine and [(14)C]-2-deoxyglucose, respectively. Serotonergic terminal depletion was assessed using radioligand binding with [(3)H]-paroxetine and immunohistochemistry. Three weeks after MDMA pre-treatment there were significant reductions in densities of 5-HT transporter (SERT)-positive fibres (-46%) and [(3)H]-paroxetine binding (-47%). In animals pre-treated with MDMA there were widespread significant decreases in LCMRglu, but no change in LCBF indicating a persistent loss of cerebrovascular constrictor tone. In both pre-treatment groups, acute MDMA produced significant increases in LCMRglu, while LCBF was significantly decreased. In 50% of MDMA-pre-treated rats, random areas of focal hyperaemia indicated a loss of autoregulatory capacity in response to MDMA-induced hypertension. These results suggest that cerebrovascular regulatory dysfunction resulting from acute exposure to MDMA is not diminished by previous exposure, despite a significant depletion in 5-HT terminals. However, there may be a sub-population, or individual circumstances, in which this dysfunction develops into a condition that might predispose to stroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.