Interactions of the BcI-2 protein with itself and other members of the Bcl-2 family, including Bcl-X-L, Bcl-X-S, Mci-i, and Bax, were explored with a yeast twohybrid system. Fusion proteins were created by linking BcI-2 family proteins to a LexA DNA-binding domain or a B42 trans-activation domain. Protein-protein interactions were examined by expression of these fusion proteins in Saccharomyces cerevisiae having a lacZ ((-galactosidase) gene under control of a LexA-dependent operator. This approach gave evidence for Bcl-2 protein homodimerization. Bcl-2 also interacted with Bcl-X-L and Mcl-i and with the dominant inhibitors Bax and Bcl-X-S. Bd-X-L displayed the same pattern of combinatorial interactions with Bd-2 family proteins as Bc1-2. Use of deletion mutants of Bc-2 suggested that BcI-2 homodimerization involves interactions between two distinct regions within the Bcl-2 protein, since a LexA protein containing Bcl-2 amino acids 83-218 mediated functional interactions with a B42 fusion protein contaiing Bcl-2 amino acids 1-81 but did not complement a B42 fusion protein containing BcI-2 amino acids 83-218. In contrast to LexA/Bcl-2 fusion proteins, expression of a LexA/Bax protein was lethal to yeast. This cytotoxicity could be abrogated by B42 fusion proteins containing BcI-2, Bcl-X-L, or Mci-i but not those containing Bcl-X-S (an alternatively spliced form of Bcl-X that lacks a well-conserved 63-amino acid region). The findings suggest a model whereby Bax and Bcl-X-S differentially regulate Bcd-2 function, and indicate that requirements for Bcl-2/Bax heterodimerization may be different from those for Bcl-2/Bcl-2 homodimerization.The bcl-2 gene becomes dysregulated in a wide variety of human cancers and contributes to neoplastic cell expansion by prolonging cell survival rather than by accelerating rates of cellular proliferation. Specifically, bcl-2 blocks programmed cell death, a physiological process that normally ensures a homeostatic balance between cell production and cell turnover in most tissues with self-renewal capacity and which often involves characteristic changes in cell morphology termed apoptosis. In fact, Bc1-2 can prevent or delay apoptosis induced by a wide variety of stimuli, including growth factor deprivation, alterations in Ca2+, free radicals, cytotoxic lymphokines, some types of viruses, radiation, and most chemotherapeutic drugs, suggesting that this oncoprotein controls a common final pathway involved in cell death regulation (reviewed in refs. 1 and 2).The mechanism by which Bcl-2 prevents cell death remains enigmatic, as the predicted amino acid sequence of the 26-kDa human Bcl-2 protein (239 aa) has no significant homology with other proteins whose biochemical activity is known. Recently, however, Bcl-2 has been shown to interact with a low molecular weight GTPase member of the Ras family, p23-R-Ras (3), and also can be coimmunoprecipitated with the serine/threonine-specific protein kinase Raf-1 (4). Thus, Bcl-2 may somehow regulate a signal transduction pathway involving...
Only a subset of cancer patients respond to T-cell checkpoint inhibitors, highlighting the need for alternative immunotherapeutics. We performed CRISPR-Cas9 screens in a leukemia cell line to identify perturbations that enhance natural killer effector functions. Our screens defined critical components of the tumor-immune synapse and highlighted the importance of cancer cell interferon-γ signaling in modulating NK activity. Surprisingly, disrupting the ubiquitin ligase substrate adaptor DCAF15 strongly sensitized cancer cells to NK-mediated clearance. DCAF15 disruption induced an inflamed state in leukemic cells, including increased expression of lymphocyte costimulatory molecules. Proteomic and biochemical analysis revealed that cohesin complex members were endogenous client substrates of DCAF15. Genetic disruption of DCAF15 was phenocopied by treatment with indisulam, an anticancer drug that functions through DCAF15 engagement. In AML patients, reduced DCAF15 expression was associated with improved survival. These findings suggest that DCAF15 inhibition may have useful immunomodulatory properties in the treatment of myeloid neoplasms.
Cellular senescence involves a stable cell cycle arrest coupled to a secretory program that, in some instances, stimulates the immune clearance of senescent cells. Using an immune competent liver cancer model in which senescence triggers CD8 T cell-mediated tumor rejection, we show that senescence also remodels the cell surface proteome to alter how tumor cells sense environmental factors, as exemplified by Type II interferon (IFN-y). Compared to proliferating cells, senescent cells upregulate the IFN-y receptor, become hypersensitized to microenvironmental IFN-y, and more robustly induce the antigen presenting machinery—-effects also recapitulated in human tumor cells undergoing therapy-induced senescence. Disruption of IFN-y sensing in senescent cells blunts their immune-mediated clearance without disabling the senescence state or its characteristic secretory program. Our results demonstrate that senescent cells have an enhanced ability to both send and receive environmental signals, and imply that each process is required for their effective immune surveillance.
Viral latency remains the most significant obstacle to HIV eradication. Clinical strategies aim to purge the latent CD4+ T cell reservoir by activating viral expression to induce death, but are undercut by the inability to target latently infected cells. Here we explored the acute signaling response of latent HIV-infected CD4+ T cells to identify dynamic phosphorylation signatures that could be targeted for therapy. Stimulation with CD3/CD28, PMA/ionomycin, or latency reversing agents prostratin and SAHA, yielded increased phosphorylation of IκBα, ERK, p38, and JNK in HIV-infected cells across two in vitro latency models. Both latent infection and viral protein expression contributed to changes in perturbation-induced signaling. Data-driven statistical models calculated from the phosphorylation signatures successfully classified infected and uninfected cells and further identified signals that were functionally important for regulating cell death. Specifically, the stress kinase pathways p38 and JNK were modified in latently infected cells, and activation of p38 and JNK signaling by anisomycin resulted in increased cell death independent of HIV reactivation. Our findings suggest that altered phosphorylation signatures in infected T cells provide a novel strategy to more selectively target the latent reservoir to enhance eradication efforts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.