The described procedure provides a rapid technique for the detection and semi-quantitation of a large number of drugs in blood. This procedure uses a minimal sample volume and employs a one-step liquid extraction and automated data processing to yield rapid turnaround times. 327 of the most commonly used medicinal and illicit drugs in Australia were selected including various amphetamines, anesthetics, anti-depressants, anti-psychotics, anti-convulsants, benzodiazepines, beta blockers, opioid and non-opioid analgesics, stimulants, THC and a large number of synthetic cannabinoids and other novel psychoactive substances. The extracts were subject to 5-minute chromatography using a Kinetex C18 50 x 4.6 mm 2.6 μm solid-core analytical column and analyzed using a Sciex 3200 Q-TRAP MS-MS (+ ESI, MRM mode, two transitions per analyte). The method was fully validated in accordance with international guidelines. Matrix effects and extraction efficiencies were acceptable with most analytes showing > 80% response and low variation (within 25%RSD). Cannabinoids were most affected by the matrix and yielded poorest recovery values but were still detectable. Precision, accuracy, repeatability and multipoint linearity were assessed for all analytes. The method has been used in routine practice in the forensic toxicology service at the Victorian Institute of Forensic Medicine in over 6000 coronial investigations using both post-mortem and clinical blood specimens. This technique has greatly increased throughput, reduced turnaround times and allowed for rapid same-day analysis of results when needed. The method is routinely used in routine overnight testing with results reported to pathologists within 4 hours of data acquisition. This rapid toxicological technique is used in conjunction with other investigative processes such as full-body CT imaging, review of case circumstances and medical histories to provide an efficient death investigation process.
Postmortem drug redistribution (PMR) is a well-known phenomenon in forensic toxicology with implications for medico-legal death investigations. Paired antemortem (AM) specimen and postmortem (PM) mortuary admission femoral blood drug concentrations from 811 coronial cases were used to construct a retrospective compilation of PM/AM drug concentration ratios for 42 parent drugs and metabolites. The median PM/AM ratios for all antidepressants were > 1 and consistent with PMR. In contrast, the median PM/AM ratios of most benzodiazepines were < 1. The antipsychotics were varied (0.63–3.3) and suggest the mixed effects of PMR and drug instability. Amphetamines exhibited no trends (0.90–0.95) and is likely confounded by many factors. The PM/AM ratios of cardiovascular drugs, opioids and other drugs are also reported. This research represents an expansive retrospective compilation of paired AM and PM drug concentrations for many toxicologically-relevant drugs. While the median PM/AM ratios demonstrate some drug-dependent trends, there was no obvious relationship between AM specimens and PM femoral blood taken at mortuary admission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.