SummaryBackgroundPublished findings on breast cancer risk associated with different types of menopausal hormone therapy (MHT) are inconsistent, with limited information on long-term effects. We bring together the epidemiological evidence, published and unpublished, on these associations, and review the relevant randomised evidence.MethodsPrincipal analyses used individual participant data from all eligible prospective studies that had sought information on the type and timing of MHT use; the main analyses are of individuals with complete information on this. Studies were identified by searching many formal and informal sources regularly from Jan 1, 1992, to Jan 1, 2018. Current users were included up to 5 years (mean 1·4 years) after last-reported MHT use. Logistic regression yielded adjusted risk ratios (RRs) comparing particular groups of MHT users versus never users.FindingsDuring prospective follow-up, 108 647 postmenopausal women developed breast cancer at mean age 65 years (SD 7); 55 575 (51%) had used MHT. Among women with complete information, mean MHT duration was 10 years (SD 6) in current users and 7 years (SD 6) in past users, and mean age was 50 years (SD 5) at menopause and 50 years (SD 6) at starting MHT. Every MHT type, except vaginal oestrogens, was associated with excess breast cancer risks, which increased steadily with duration of use and were greater for oestrogen-progestagen than oestrogen-only preparations. Among current users, these excess risks were definite even during years 1–4 (oestrogen-progestagen RR 1·60, 95% CI 1·52–1·69; oestrogen-only RR 1·17, 1·10–1·26), and were twice as great during years 5–14 (oestrogen-progestagen RR 2·08, 2·02–2·15; oestrogen-only RR 1·33, 1·28–1·37). The oestrogen-progestagen risks during years 5–14 were greater with daily than with less frequent progestagen use (RR 2·30, 2·21–2·40 vs 1·93, 1·84–2·01; heterogeneity p<0·0001). For a given preparation, the RRs during years 5–14 of current use were much greater for oestrogen-receptor-positive tumours than for oestrogen-receptor-negative tumours, were similar for women starting MHT at ages 40–44, 45–49, 50–54, and 55–59 years, and were attenuated by starting after age 60 years or by adiposity (with little risk from oestrogen-only MHT in women who were obese). After ceasing MHT, some excess risk persisted for more than 10 years; its magnitude depended on the duration of previous use, with little excess following less than 1 year of MHT use.InterpretationIf these associations are largely causal, then for women of average weight in developed countries, 5 years of MHT, starting at age 50 years, would increase breast cancer incidence at ages 50–69 years by about one in every 50 users of oestrogen plus daily progestagen preparations; one in every 70 users of oestrogen plus intermittent progestagen preparations; and one in every 200 users of oestrogen-only preparations. The corresponding excesses from 10 years of MHT would be about twice as great.FundingCancer Research UK and the Medical Research Council.
Purpose To evaluate the effect of adjuvant radiotherapy (RT) after breast conservation surgery in different breast cancer subtypes in a large, randomized clinical trial with long-term follow-up. Patients and Methods Tumor tissue was collected from 1,003 patients with node-negative, stage I and II breast cancer who were randomly assigned in the Swedish Breast Cancer Group 91 Radiotherapy trial between 1991 and 1997 to breast conservation surgery with or without RT. Systemic adjuvant treatment was sparsely used (8%). Subtyping was performed with immunohistochemistry and in situ hybridization on tissue microarrays for 958 tumors. Results RT reduced the cumulative incidence of ipsilateral breast tumor recurrence (IBTR) as a first event within 10 years for luminal A-like tumors (19% v 9%; P = .001), luminal B-like tumors (24% v 8%; P < .001), and triple-negative tumors (21% v 6%; P = .08), but not for human epidermal growth factor receptor 2-positive (luminal and nonluminal) tumors (15% v 19%; P = .6); however, evidence of an overall difference in RT effect between subtypes was weak ( P = .21). RT reduced the rate of death from breast cancer (BCD) for triple-negative tumors (hazard ratio, 0.35; P = .06), but not for other subtypes. Death from any cause was not improved by RT in any subtype. A hypothesized clinical low-risk group did not have a low risk of IBTR without RT, and RT reduced the rate of IBTR as a first event after 10 years (20% v 6%; P = .008), but had no effect on BCD or death from any cause. Conclusion Subtype was not predictive of response to RT, although, in our study, human epidermal growth factor receptor 2-positive tumors seemed to be most radioresistant, whereas triple-negative tumors had the largest effect on BCD. The effect of RT in the presumed low-risk luminal A-like tumors was excellent.
PURPOSE Most patients with early-stage breast cancer are treated with adjuvant radiotherapy (RT) after breast-conserving surgery (BCS) to prevent locoregional recurrence (LRR). However, no genomic tools are used currently to select the optimal RT strategy. METHODS We profiled the transcriptome of primary tumors on a clinical grade assay from the SweBCG91-RT trial, in which patients with node-negative breast cancer were randomly assigned to either whole-breast RT after BCS or no RT. We derived a new classifier, Adjuvant Radiotherapy Intensification Classifier (ARTIC), comprising 27 genes and patient age, in three publicly available cohorts, then independently validated ARTIC for LRR in 748 patients in SweBCG91-RT. We also compared previously published genomic signatures for ability to predict benefit from RT in SweBCG91-RT. RESULTS ARTIC was highly prognostic for LRR in patients treated with RT (hazard ratio [HR], 3.4; 95% CI, 2.0 to 5.9; P < .001) and predictive of RT benefit ( Pinteraction = .005). Patients with low ARTIC scores had a large benefit from RT (HR, 0.33 [95% CI, 0.21 to 0.52], P < .001; 10-year cumulative incidence of LRR, 6% v 21%), whereas those with high ARTIC scores benefited less from RT (HR, 0.73 [95% CI, 0.44 to 1.2], P = .23; 10-year cumulative incidence of LRR, 25% v 32%). In contrast, none of the eight previously published signatures were predictive of benefit from RT in SweBCG91-RT. CONCLUSION ARTIC identified women with a substantial benefit from RT as well as women with a particularly elevated LRR risk in whom whole-breast RT was not sufficiently effective and, thus, in whom intensified treatment strategies such as tumor-bed boost, and possibly regional nodal RT, should be considered. To our knowledge, ARTIC is the first classifier validated as predictive of benefit from RT in a phase III clinical trial with patients randomly assigned to receive or not receive RT.
G protein-coupled estrogen receptor (GPER), or GPR30, is a membrane receptor reported to mediate non-genomic estrogen responses. Tamoxifen is a partial agonist at GPER in vitro. Here, we investigated if GPER expression is prognostic in primary breast cancer, if the receptor is treatment-predictive for adjuvant tamoxifen, and if receptor subcellular localization has any impact on the prognostic value. Total and plasma membrane (PM) GPER expression was analyzed by immunohistochemistry in breast tumors from 742 postmenopausal lymph node-negative patients subsequently randomized for tamoxifen treatment for 2-5 years versus no systemic treatment, regardless of estrogen receptor (ER) status, and with a median follow-up of 17 years for patients free of event. PM GPER expression was a strong independent prognostic factor for poor prognosis in breast cancer without treatment-predictive information for tamoxifen. In the tamoxifen-treated ER-positive and progesterone receptor (PgR)-positive patient subgroup, the absence of PM GPER (53 % of all ER-positive tumors) predicted 91 % 20-year distant disease-free survival, compared to 73 % in the presence of GPER (p = 0.001). Total GPER expression showed positive correlations with ER and PgR and negative correlation with histological grade, but the correlations were biphasic. On the other hand, PM GPER expression showed strong negative correlations with ER and PgR, and strong positive correlation with HER2 overexpression and high histological grade. GPER overexpression and PM localization are critical events in breast cancer progression, and lack of GPER in the PM is associated with excellent long-term prognosis in ER-positive and PgR-positive tamoxifen-treated primary breast cancer.
BackgroundAdjuvant endocrine treatment improves survival after estrogen receptor (ER) positive breast cancer. Recurrences occur, and most patients with metastatic breast cancer develop treatment resistance and incurable disease. An influential factor in relation to endocrine treatment resistance is tumor hypoxia and the hypoxia inducible transcription factors (HIFs). Poor perfusion makes tumors hypoxic and induces the HIFs, which promote cell survival. We previously showed that hypoxic breast cancer cells are tamoxifen-resistant, and that HIF-inhibition restored tamoxifen-sensitivity. We found that HIF-induced tamoxifen-resistance involve cross-talk with epithelial growth factor receptor (EGFR), which itself is linked to tamoxifen resistance. Contralateral breast cancer (CBC), i.e. development of a second breast cancer in the contralateral breast despite adjuvant tamoxifen treatment is in essence a human in vivo-model for tamoxifen-resistance that we explore here to find molecular pathways of tamoxifen-resistance.MethodsWe constructed a tissue-microarray including tumor-tissue from a large well-defined cohort of CBC-patients, a proportion of which got their second breast cancer despite ongoing adjuvant therapy. Using immunohistochemistry >500 patients were evaluable for HIF-1α and EGFR in both tumors, and correlations to treatment, patient outcome, prognostic and predictive factors were analyzed.ResultsWe found an increased proportion of HIF-1α-positive tumors in tamoxifen-resistant (CBC during adjuvant tamoxifen) compared to naïve tumors (CBC without prior tamoxifen). Tumor HIF-1α-positivity correlated to increased breast cancer mortality, and negative prognostic factors including low age at diagnosis and ER-negativity. There was a covariance of HIF-1α- and EGFR-expression and also EGFR-expression correlated to poor prognosis.ConclusionsThe increased percentage of HIF-1α-positive tumors formed during adjuvant tamoxifen suggests a role for HIF-1α in escaping tamoxifen’s restraining effects on breast cancer. Implicating a potential benefit of HIF-inhibitors in targeting breast cancers resistant to endocrine therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.