In this study, we monitored episodic luteinizing hormone (LH) secretion throughout development in eight April-born ewe lambs to determine if a change in LH pulse patterns preceded first ovulation at puberty. LH pulses were measured in samples collected every 12 min for 6 h once in July, twice a month from 22 August to 2 October, and then weekly until puberty. Progesterone concentrations, measured in samples taken 3/wk, were used as an index of first ovulation, which occurred at 29.3 +/- 0.7 wk of age. LH pulse frequencies throughout most of this period ranged from 0 to 2 pulses/6 h, with no change over time. However, during the week prior to the first progesterone rise, there was a significant increase in pulse frequency to a level seen during the follicular phase in post-pubertal lambs. This increase in pulse frequency was evident in 7 of 8 lambs; pulses were not analyzed in the last lamb because samples were taken during the LH surge. In contrast, LH pulse amplitude did not increase prior to puberty. In fact, pulse amplitude declined linearly during the 3 wk before first ovulation and then increased during the follicular phase in post-pubertal animals. These results support the hypothesis that an increase in the frequency of episodic LH secretion is a key event leading to the onset of ovarian cycles in the lamb. Whether an increase in pulse amplitude is also necessary remains unclear. If so, it must occur just before the LH surge, since it was not detected in any samples taken before puberty in this study.
The objectives of this investigation were 1) to report that pulmonary surfactant inhibits lipopolysaccharide (LPS)-induced nitric oxide (⋅ NO) production by rat alveolar macrophages, 2) to study possible mechanisms for this effect, and 3) to determine which surfactant component(s) is responsible. ⋅ NO produced by the cells in response to LPS is due to an inducible ⋅ NO synthase (iNOS). Surfactant inhibits LPS-induced ⋅ NO formation in a concentration-dependent manner; ⋅ NO production is inhibited by ∼50 and ∼75% at surfactant levels of 100 and 200 μg phospholipid/ml, respectively. The inhibition is not due to surfactant interference with the interaction of LPS with the cells or to disruption of the formation of iNOS mRNA. Also, surfactant does not seem to reduce ⋅ NO formation by directly affecting iNOS activity or by acting as an antioxidant or radical scavenger. However, in the presence of surfactant, there is an ∼80% reduction in the amount of LPS-induced iNOS protein in the cells. LPS-induced ⋅ NO production is inhibited by Survanta, a surfactant preparation used in replacement therapy, as well as by natural surfactant. ⋅ NO formation is not affected by the major lipid components of surfactant or by two surfactant-associated proteins, surfactant protein (SP) A or SP-C. However, the hydrophobic SP-B inhibits ⋅ NO formation in a concentration-dependent manner; ⋅ NO production is inhibited by ∼50 and ∼90% at SP-B levels of 1–2 and 10 μg/ml, respectively. These results show that lung surfactant inhibits LPS-induced ⋅ NO production by alveolar macrophages, that the effect is due to a reduction in iNOS protein levels, and that the surfactant component responsible for the reduction is SP-B.
Results from previous studies suggest that alveolar macrophages must be exposed to inflammatory stimuli to produce nitric oxide (⋅ NO). In this study, we report that naive unstimulated rat alveolar macrophages do produce ⋅ NO and attempt to characterize this process. Western blot analysis demonstrates that the enzyme responsible is an endothelial nitric oxide synthase (eNOS). No brain or inducible NOS can be detected. The rate of ⋅ NO production is ∼0.07 nmol ⋅ 106cells−1 ⋅ h−1, an amount that is less than that produced by the eNOS found in alveolar type II or endothelial cells. Alveolar macrophage ⋅ NO formation is increased in the presence of extracellularl-arginine, incubation medium containing magnesium and no calcium, a calcium ionophore (A-23187), or methacholine. ⋅ NO production is inhibited by N G-nitro-l-arginine methyl ester (l-NAME) but not by N G-nitro-l-arginine,l- N 5-(1-iminomethyl)ornithine hydrochloride, or aminoguanidine. Incubation with ATP, ADP, or histamine also inhibits ⋅ NO formation. Some of these properties are similar to and some are different from properties of eNOS in other cell types. Cellular ⋅ NO levels do not appear to be related to ATP or lactate content. Alveolar macrophage production of ⋅ NO can be increased approximately threefold in the presence of lung surfactant or its major component, dipalmitoyl phosphatidylcholine (DPPC). The DPPC-induced increase in ⋅ NO formation is time and concentration dependent, can be completely inhibited by l-NAME, and does not appear to be related to the degradation of DPPC by alveolar macrophages. These results demonstrate that unstimulated alveolar macrophages produce ⋅ NO via an eNOS and that lung surfactant increases ⋅ NO formation. This latter effect may be important in maintaining an anti-inflammatory state in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.