We have previously shown that nonobese diabetic (NOD) mice are selectively deficient in α/β-T cell receptor (TCR)+CD4−CD8− NKT cells, a defect that may contribute to their susceptibility to the spontaneous development of insulin-dependent diabetes mellitus (IDDM). The role of NKT cells in protection from IDDM in NOD mice was studied by the infusion of thymocyte subsets into young female NOD mice. A single intravenous injection of 106 CD4−/lowCD8− or CD4−CD8− thymocytes from female (BALB/c × NOD)F1 donors protected intact NOD mice from the spontaneous onset of clinical IDDM. Insulitis was still present in some recipient mice, although the cell infiltrates were principally periductal and periislet, rather than the intraislet pattern characteristic of insulitis in unmanipulated NOD mice. Protection was not associated with the induction of “allogenic tolerance” or systemic autoimmunity. Accelerated IDDM occurs after injection of splenocytes from NOD donors into irradiated adult NOD recipients. When α/β-TCR+ and α/β-TCR− subsets of CD4−CD8− thymocytes were transferred with diabetogenic splenocytes and compared for their ability to prevent the development of IDDM in irradiated adult recipients, only the α/β-TCR+ population was protective, confirming that NKT cells were responsible for this activity. The protective effect in the induced model of IDDM was neutralized by anti–IL-4 and anti–IL-10 monoclonal antibodies in vivo, indicating a role for at least one of these cytokines in NKT cell-mediated protection. These results have significant implications for the pathogenesis and potential prevention of IDDM in humans.
Systemic lupus erythematosus induced by Mycobacterium bovis in diabetes-prone nonobese diabetic mice was mapped in a backcross to the BALB/c strain. The subphenotypes—hemolytic anemia, antinuclear autoantibodies, and glomerular immune complex deposition—did not cosegregate, and linkage analysis for each trait was performed independently. Hemolytic anemia mapped to two loci: Bah1 at the MHC on chromosome 17 and Bah2 on distal chromosome 16. Antinuclear autoantibodies mapped to three loci: Bana1 at the MHC on chromosome 17, Bana2 on chromosome 10, and Bana3 on distal chromosome 1. Glomerular immune complex deposition did not show significant linkage to any genomic region. Mapping of autoantibodies (Coombs’ or antinuclear autoantibodies) identified two loci: Babs1 at the MHC and Babs2 on distal chromosome 1. It has previously been reported that genes conferring susceptibility to different autoimmune diseases map nonrandomly to defined regions of the genome. One possible explanation for this clustering is that some alleles at loci within these regions confer susceptibility to multiple autoimmune diseases—the “common gene” hypothesis. With the exception of the H2, this study failed to provide direct support for the common gene hypothesis, because the loci identified as conferring susceptibility to systemic lupus erythematosus did not colocalize with those previously implicated in diabetes. However, three of the four regions identified had been previously implicated in other autoimmune diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.