We are performing a uniform and unbiased imaging survey of the Large Magellanic Cloud (LMC; $7 ; 7) using the IRAC (3.6, 4.5, 5.8, and 8 m) and MIPS (24, 70, and 160 m) instruments on board the Spitzer Space Telescope in the Surveying the Agents of a Galaxy's Evolution (SAGE) survey, these agents being the interstellar medium (ISM) and stars in the LMC. This paper provides an overview of the SAGE Legacy project, including observing strategy, data processing, and initial results. Three key science goals determined the coverage and depth of the survey. The detection of diffuse ISM with column densities >1:2 ; 10 21 H cm À2 permits detailed studies of dust processes in the ISM. SAGE's point-source sensitivity enables a complete census of newly formed stars with masses >3 M that will determine the current star formation rate in the LMC. SAGE's detection of evolved stars with mass-loss rates >1 ; 10 À8 M yr À1 will quantify the rate at which evolved stars inject mass into the ISM of the LMC. The observing strategy includes two epochs in 2005, separated by 3 months, that both mitigate instrumental artifacts and constrain source variability. The SAGE data are nonproprietary. The data processing includes IRAC and MIPS pipelines and a database for mining the point-source catalogs, which will be released to the community in support of Spitzer proposal cycles 4 and 5. We present initial results on the epoch 1 data for a region near N79 and N83. The MIPS 70 and 160 m images of the diffuse dust emission of the N79/N83 region reveal a similar distribution to the gas emissions, especially the H i 21 cm emission. The measured point-source sensitivity for the epoch 1 data is consistent with expectations for the survey. The point-source counts are highest for the IRAC 3.6 m band and decrease dramatically toward longer wavelengths, A
Color-magnitude diagrams (CMDs) are presented for the Spitzer SAGE (Surveying the Agents of a Galaxy's Evolution) survey of the Large Magellanic Cloud (LMC). IRAC and MIPS 24 µm epoch one data are presented. These data represent the deepest, widest mid-infrared CMDs of their kind ever produced in the LMC. Combined with the 2MASS survey, the diagrams are used to delineate the evolved stellar populations in the Large Magellanic Cloud as well as Galactic foreground and extragalactic background populations. Some 32000 evolved stars brighter than the tip of the red giant branch are identified. Of these, approximately 17500 are classified as oxygen-rich, 7000 carbon-rich, and another 1200 as "extreme" asymptotic giant branch (AGB) stars. Brighter members of the latter group have been called "obscured" AGB stars in the literature owing to their dusty circumstellar envelopes. A large number (1200) of luminous oxygen-rich AGB stars/M supergiants are also identified. Finally, there is strong evidence from the 24 µm MIPS channel that previously unexplored, lower luminosity oxygen-rich AGB stars contribute significantly to the mass loss budget of the LMC (1200 such sources are identified).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.