Accurate species identification is the prerequisite to assess the relevance of mosquito specimens, but is often hindered by missing or damaged morphological features. The present study analyses the applicability of wing geometric morphometrics as a low-cost and practical alternative to identify native mosquitoes in Germany. Wing pictures were collected for 502 female mosquitoes of five genera and 19 species from 80 sampling sites. The reliable species identification based on interspecific wing geometry of 18 landmarks per specimen was tested. Leave-one-out cross validation revealed an overall accuracy of 99% for the genus and 90% for the species identification. Misidentifications were mainly due to three pairings of Aedes species: Aedes annulipes vs. Aedes cantans, Aedes cinereus vs. Aedes rossicus and Aedes communis vs. Aedes punctor. Cytochrome oxidase subunit I (COI) gene region was sequenced to validate the morphological and morphometric identification. Similar to the results of the morphometric analysis, the same problematic three Aedes-pairs clustered, but most other species could be well separated. Overall, our study underpins that morphometric wing analysis is a robust tool for reliable mosquito identification, which reach the accuracy of COI barcoding.
Background The analysis of large mosquito samples is expensive and time-consuming, delaying the efficient timing of vector control measurements. Processing a fraction of a sample using a subsampling method can significantly reduce the processing effort. However, a comprehensive evaluation of the reliability of different subsampling methods is missing. Methods A total of 23 large mosquito samples (397–4713 specimens per sample) were compared in order to evaluate five subsampling methods for the estimation of the number of specimens and species: area, volume, weight, selection of 200 random specimens and analyses with an image processing software. Each sample was distributed over a grid paper (21.0 × 29.7 cm; 25 grid cells of 4.2 × 5.9 cm) with 200 randomly distributed points. After taking pictures, mosquito specimens closest to each of the 200 points on the paper were selected. All mosquitoes per grid cell were identified by morphology and transferred to scaled tubes to estimate the volume. Finally, the fresh and dry weights were determined. Results The estimated number of specimens and species did not differ between the area-, volume- and weight-based method. Subsampling 20% of the sample gave an error rate of approximately 12% for the number of specimens, 6% for the proportion of the most abundant species and between 6–40% for the number of species per sample. The error for the estimated number of specimens using the picture processing software ImageJ gave a similar error rate when analyzing 15–20% of the total sample. By using 200 randomly selected specimens it was possible to give a precise estimation of the proportion of the most abundant species ( r = 0.97, P < 0.001), but the number of species per sample was underestimated by 28% on average. Selecting adjacent grid cells instead of sampling randomly chosen grid cells and using dry weight instead of wet weight did not increase the accuracy of estimates. Conclusions Different subsampling methods have various advantages and disadvantages. However, the area-based analysis of 20% of the sample is probably the most suitable approach for most kinds of mosquito studies, giving sufficiently precise estimations of the number of specimens and species, which is slightly less laborious compared to the other methods tested. Electronic supplementary material The online version of this article (10.1186/s13071-019-3606-5) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.