Skeletal muscle satellite cells were cultured from mature rats and were treated in vitro with various combinations of transforming growth factor (TGF)-beta, fibroblast growth factor (FGF), and insulin-like growth factor I (IGF-I). In serum-free defined medium the following observations were made: TGF-beta depressed proliferation and inhibited differentiation; FGF stimulated proliferation and depressed differentiation; IGF-I stimulated proliferation to a small degree but demonstrated a more pronounced stimulation of differentiation. In evaluating combinations of these three factors, the differentiation inhibiting effect of TGF-beta could not be counteracted by any combination of IGF-I or FGF. The proliferation-depressing activity of TGF-beta, however, could not inhibit the mitogenic activity of FGF. Maximum stimulation of proliferation was observed in the presence of both FGF and IGF-I. The highest percentage fusion was also observed under these conditions, but differentiation with minimal proliferation resulted from treatment with IGF-I, alone. By altering the concentrations of TGF-beta, FGF, and IGF-I, satellite cells can be induced to proliferate, differentiate, or to remain quiescent.
Skeletal muscle satellite cells were cultured from mature rats and were treated in vitro with transforming growth factor-beta (TGF-beta). Muscle-specific protein synthesis and satellite cell fusion were used as indicators of muscle differentiation; a dose-dependent inhibition of differentiation was observed in response to TGF-beta. In addition, TGF-beta depressed cell proliferation in a dose-dependent manner. Half-maximal inhibition of differentiation was seen with a TGF-beta concentration of approximately 0.1 ng/ml. Although proliferation was not inhibited, it was depressed and half-maximal suppression of proliferation occurred in response to 0.1-0.5 ng TGF-beta/ml. Neonatal rat myoblasts were also subjected to TGF-beta treatment, and similar results were observed. Neonatal cells, however, were more sensitive to TGF-beta than satellite cells, as indicated by the reduced concentrations of TGF-beta required to inhibit differentiation and reduce the rate of proliferation. Under identical culture conditions proliferation of muscle-derived fibroblasts were also depressed. The differentiation inhibiting effect of TGF-beta on satellite cells was reversible. It has been suggested that TGF-beta could be an important regulator of tissue repair, and its in vitro effects on satellite cells suggest a possible role in regulation of muscle regeneration.
The presence of desmin was characterized in cultured rat and bovine satellite cells and its potential usefulness as a marker for identifying satellite cells in vitro was evaluated. In primary cultures, positive immunohistochemical staining for desmin and skeletal muscle myosin was observed in rat and bovine myotubes. A small number of mononucleated cells (20% of rat satellite cells and 5% of bovine satellite cells) were myosin-positive, indicative of post-mitotic differentiated myocytes. In bovine satellite cell cultures 13% of the mononucleated cells were desmin-positive, while 84% of the mononucleated cells in rat satellite cell cultures were desmin-positive. Rat satellite cell mass cultures and bovine satellite cell clonal density cultures were pulsed with 3H-thymidine, and autoradiographic data revealed that greater than 94% of dividing rat cells were desmin-positive, suggesting that desmin is synthesized in proliferating rat satellite cells. However, no desmin was seen in cells that incorporated labeled thymidine in bovine satellite cell clones. Analysis of clonal density cultures revealed that only 14% of the mononucleated cells in bovine satellite cell colonies were desmin-positive, whereas 98% of the cells in rat satellite cell colonies were desmin-positive. Fibroblast colonies from both species were desmin-negative. In order to further examine the relationship between satellite cell differentiation and desmin expression, 5-bromo-2'-deoxyuridine (BrdU) was added to culture medium at the time of plating to inhibit differentiation. Fusion was inhibited in rat and bovine cultures, and cells continued to divide. Very few desmin-positive cells were found in bovine cultures, but greater than 90% of the cells in rat cultures stained positive for desmin. The presence of desmin and sarcomeric myosin was also evaluated in regenerating rat tibialis anterior five days after bupivacaine injection. In regenerating areas of the muscle many desmin-positive cells were present, and only a few cells stained positive for skeletal muscle myosin. Application of desmin staining to rat satellite cell growth assays indicated that rat satellite cells cultured in serum-containing medium were contaminated with fibroblasts at levels that ranged from approximately 5% in 24 hr cultures to 15% in mature cultures. In defined medium 4 day cultures contain approximately 95% to 98% desmin-positive satellite cells.(ABSTRACT TRUNCATED AT 400 WORDS)
A serum-free medium has been devised that supports the proliferation and differentiation of primary cultures of rat skeletal muscle satellite cells for up to 4 d. The medium consists of a mixture of Dulbecco's modified Eagle's medium and MCDB-104 plus insulin, dexamethasone, pituitary fibroblast growth factor, Deutsch fetuin, and linoleic acid. In addition to promoting the formation of myotubes from satellite cells, a decrease in fibroblast contamination of these cultures was observed when cultures grown in serum-free medium were compared to cultures grown in serum-containing medium.
The potential role of satellite cells in mediating the effect of trenbolone [17 beta-hydroxyestra-4,9-11-trien-3-one (TBOH)] on skeletal muscle hypertrophy was examined. Young female Sprague-Dawley rats received TBOH injections daily for 2 weeks; growth, body composition, and the composition of selected muscles were assessed. Treated rats grew more rapidly and deposited less body lipid and more protein. The semimembranosus muscle from treated rats was larger and had approximately 60% more DNA per muscle than muscles from control rats. The addition of trenbolone directly to the medium of cultured satellite cells did not stimulate cell proliferation, nor did it augment the stimulatory response of these cells to fibroblast growth factor (FGF) or insulin-like growth factor I (IGF-I). In contrast, satellite cells cultured from TBOH-treated rats exhibited greater proliferative responses to FGF and IGF-I than satellite cells from control rats. In addition, serum from TBOH-treated rats stimulated greater cell proliferation in satellite cell cultures than serum from control rats. These experiments suggest that one possible mechanism responsible for the ability of TBOH to stimulate skeletal muscle hypertrophy may be through enhanced proliferation and differentiation of satellite cells as a result of the increased sensitivity of these cells to IGF-I and FGF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.