Quantitative real-time polymerase chain reaction differentiating 10 Fusarium spp. and Microdochium nivale or M. majus was applied to a total of 396 grain samples of wheat, barley, triticale, oat, and rye sampled across Denmark from 2003 to 2007, along with selected samples of wheat and barley from 1957 to 2000, to determine incidence and abundance of individual Fusarium spp. The mycotoxins deoxynivalenol (DON), nivalenol, zearalenone, T-2, and HT-2 were quantified using liquid chromatography-double mass spectrometry. Major differences in the Fusarium species complex among the five cereals as well as great yearly variation were seen. Fusarium graminearum, F. culmorum, and F. avenaceum were dominant in wheat, with DON as the dominant mycotoxin. F. langsethiae, F. culmorum, and F. avenaceum were dominant in barley and oat, leading to relatively high levels of the mycotoxins T-2 and HT-2. F. graminearum, F. culmorum, and F. avenaceum dominated in triticale and rye. The nontoxigenic M. nivale/majus were present in significant amounts in all cereal species. Wheat and barley samples from 1957 to 1996 exhibited no or very low amounts of F. graminearum, indicating a recent increase of this pathogen. Biomass and mycotoxin data exhibited good correlations between Fusarium spp. and their corresponding mycotoxins under field conditions.
Penaeus monodon shrimp collected from across the Indo-Pacific region during 1997-2004 were screened for the presence of yellow head-related viruses. Phylogenetic analyses of amplified ORF1b gene segments identified at least six distinct genetic lineages (genotypes). Genotype 1 (YHV) was detected only in shrimp with yellow head disease. Genotype 2 (GAV) was detected in diseased shrimp with the less severe condition described as mid-crop mortality syndrome and in healthy shrimp from Australia, Thailand and Vietnam. Other genotypes occurred commonly in healthy shrimp. Sequence comparisons of structural protein genes (ORF2 and ORF3), intergenic regions (IGRs) and the long 3'-UTR supported the delineation of genotypes and identified both conserved and variant structural features. In putative transcription regulating sequences (TRSs) encompassing the sub-genomic mRNA 5'-termini, a core motif (5'-GUCAAUUACAAC-3') is absolutely conserved. A small (83 nt) open reading frame (ORF4) in the 3'-UTR of GAV is variously truncated in all other genotypes and a TRS-like element preceding ORF4 is invariably corrupted by a A>G/U substitution in the central core motif (5'-UU(G/U)CAAC-3'). The data support previous evidence that ORF4 is a non-functional gene under construction or deconstruction. The 3'-UTRs also contain predicted 3'-terminal hairpin-loop structures that are preserved in all genotypes by compensatory nucleotide substitutions, suggesting a role in polymerase recognition for minus-strand RNA synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.