For any positive integer k, we investigate degree conditions implying that a graph G of order n contains a 2-factor with exactly k components (vertex disjoint cycles). In particular, we prove that for k ≤ (n/4), Ore's classical condition for a graph to be hamiltonian (k = 1) implies that the graph contains a 2-factor with exactly k components. We also obtain a sufficient degree condition for a graph to have k vertex disjoint cycles, at least s of which are 3-cycles and the remaining are 4-cycles for any s ≤ k.
For a positive integer k, a graph G is k-ordered hamiltonian if for every ordered sequence of k vertices there is a hamiltonian cycle that encounters the vertices of the sequence in the given order. It is shown that if G is a graph of order n with 3 k n / 2, and deg(u) þ deg(v ) ! n þ (3k À 9)/2 for every pair u; v of nonadjacent vertices of G, then G is k-ordered hamiltonian. Minimum degree conditions are also given for k-ordered hamiltonicity. ß
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.