Prenatal stress (PNS) might affect the developmental programming of adult chronic diseases such as metabolic and mood disorders. The molecular mechanisms underlying such regulations may rely upon long-term changes in stress-responsive effectors such as Brain-Derived Neurotrophic Factor (BDNF) that can affect neuronal plasticity underlying mood disorders and may also play a role in metabolic regulation. Based upon previous data, we hypothesized that PNS might lead to greater vulnerability to an obesogenic challenge experienced at adulthood. In order to investigate our hypothesis, pregnant Sprague-Dawley female rats underwent a chronic procedure of restraint stress during the last week of gestation. The adult offspring were then challenged with a high fat diet (HFD) over 8 weeks and tested for metabolic and emotional endpoints. Moreover, brain specific changes in Bdnf expression levels were also assessed. Overall, HFD resulted in increased caloric intake, insulin resistance, impaired glucose tolerance and higher circulating levels of leptin, while PNS increased the leptin/adiponectin ratio, an index of metabolic risk in adult male subjects. Interestingly, HFD consumption increased anxiety-like behaviors in the Elevated Plus Maze, particularly in males, and this effect was buffered by PNS. Levels of Bdnf were finely modulated by PNS and HFD in a region- and sex-dependent fashion: female offspring overall showed greater plasticity, possibly mediated through increased total Bdnf mRNA expression both in the hippocampus and in the hypothalamus. In conclusion, while the experience of maternal stress during intrauterine life promotes metabolic dysfunction induced by a HFD at adulthood, the interaction between PNS and HFD is positive in male subjects, and in agreement with the match-mismatch hypothesis, resulting in a reduction of anxious behaviors.
Prenatal maternal infection represents a risk factor for the development of psychopathologic conditions later in life. Clinical evidence is also supported by animal models in which the vulnerability to develop a schizophrenic-like phenotype likely originates from inflammatory processes as early as in the womb. Prenatal immune challenge, for example, induces a variety of long-term behavioral alterations in mice, such as deficits in recognition and spatial working memory, perseverative behaviors and social impairments, which are relevant to different symptom clusters of schizophrenia. Here, we investigated the modulation of GABAergic markers in the dorsal and ventral hippocampus of adult mice exposed to late prenatal immune challenge with the viral mimetic Poly(I:C) (polyriboinosinic-polyribocytidilic-acid) at gestational day 17, and we evaluated the ability of chronic treatment with the multi-receptor antipsychotic lurasidone to modulate the alterations produced by maternal infection. Poly(I:C) mice show a significant reduction of key GABAergic markers, such as GAD67 and parvalbumin, specifically in the dorsal hippocampus, which were normalized by chronic lurasidone administration. Moreover, chronic drug administration increases the expression of the pool of brain derived neurotrophic factor (BDNF) transcripts with the long 3'-UTR as well as the levels of mature BDNF protein in the synaptosomal compartment, selectively in dorsal hippocampus. All in all, our findings demonstrate that lurasidone is effective in ameliorating molecular abnormalities observed in Poly(I:C) mice, providing further support to the neuroplastic properties of this multi-receptor antipsychotic drug.
The exposure to adverse environmental situations during sensitive periods of development may induce re-organizational effects on different systems and increase the vulnerability to develop psychiatric disorders later in life. The adolescent period has been demonstrated extremely susceptible to stressful events. However, most of the studies focused on the immediate effects of stress exposure and few of them investigated sex differences. This raised the question if these modulations might also be long-lasting and how the differential maturational events taking place during adolescence between males and females might have a role in the detrimental effects of stress. Given the importance of social play for the right maturation of behaviour during adolescence, we used the preclinical model of social deprivation, based on the lack of all social contacts, for four weeks after weaning, followed by re-socialization until adulthood. We found that both male and female animals reared in isolation during adolescence developed an anhedonic phenotype at adulthood, without any impairments in the cognitive domain. At molecular level, these functional changes were associated with sex-specific impairments in the expression of neuroplastic markers as well as of hypothalamic-pituitary-adrenal axis-related genes. Lastly, we also reported anatomically-selective changes associated with the enduring effects of social isolation.
The purpose of this article is to characterize skin lesions in cynomolgus monkeys following vildagliptin (dipeptidyl peptidase-4 inhibitor) treatment. Oral vildagliptin administration caused dose-dependent and reversible blister formation, peeling and flaking skin, erosions, ulcerations, scabs, and sores involving the extremities at ≥5 mg/kg/day and necrosis of the tail and the pinnae at ≥80 mg/kg/day after 3 weeks of treatment. At the affected sites, the media and the endothelium of dermal arterioles showed hypertrophy/hyperplasia. Skin lesion formation was prevented by elevating ambient temperature. Vildagliptin treatment also produced an increase in blood pressure and heart rate likely via increased sympathetic tone. Following treatment with vildagliptin at 80 mg/kg/day, the recovery time after lowering the temperature in the feet of monkeys and inducing cold stress was prolonged. Ex vivo investigations showed that small digital arteries from skin biopsies of vildagliptin-treated monkeys exhibited an increase in neuropeptide Y-induced vasoconstriction. This finding correlated with a specific increase in NPY and in NPY1 receptors observed in the skin of vildagliptin-treated monkeys. Present data provide evidence that skin effects in monkeys are of vascular origin and that the effects on the NPY system in combination with increased peripheral sympathetic tone play an important pathomechanistic role in the pathogenesis of cutaneous toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.