We examined the role of the medial prefrontal cortex (mPFC) in reward processing and the control of consummatory behavior. Rats were trained in an operant licking procedure in which they received alternating access to solutions with relatively high and low levels of sucrose (20 and 4%, w/v). Each level of sucrose was available for fixed intervals of 30 s over 30 min test sessions. Over several days of training, rats came to lick persistently when the high level of sucrose was available and suppressed licking when the low level of sucrose was available. Pharmacological inactivations of the mPFC, specifically the rostral part of the prelimbic area, greatly reduced intake of the higher value fluid and only slightly increased intake of the lower value fluid. In addition, the inactivations altered within-session patterns and microstructural measures of licking. Rats licked equally for the high and low levels of sucrose at the beginning of the test sessions and “relearned” to reduce intake of the low value fluid over the test sessions. Durations of licking bouts (clusters of licks with inter-lick intervals <0.5 s) were reduced for the high value fluid and there were many more brief licking bouts (<1 s) when the low value fluid was available. These effects were verified using an alternative approach (optogenetic silencing using archaerhodopsin) and were distinct from inactivation of the ventral striatum, which simply increased overall intake. Our findings suggest that the mPFC is crucial for the maintenance of persistent licking and the expression of learned feeding strategies.
Rodents lick to consume fluids. The reward value of ingested fluids is likely to be encoded by neuronal activity entrained to the lick cycle. Here, we investigated relationships between licking and reward signaling by the medial frontal cortex (MFC), a key cortical region for reward-guided learning and decision-making. Multielectrode recordings of spike activity and field potentials were made in male rats as they performed an incentive contrast licking task. Rats received access to higher- and lower-value sucrose rewards over alternating 30 s periods. They learned to lick persistently when higher-value rewards were available and to suppress licking when lower-value rewards were available. Spectral analysis of spikes and fields revealed evidence for reward value being encoded by the strength of phase-locking of a 6-12 Hz theta rhythm to the rats' lick cycle. Recordings during the initial acquisition of the task found that the strength of phase-locking to the lick cycle was strengthened with experience. A modification of the task, with a temporal gap of 2 s added between reward deliveries, found that the rhythmic signals persisted during periods of dry licking, a finding that suggests the MFC encodes either the value of the currently available reward or the vigor with which rats act to consume it. Finally, we found that reversible inactivations of the MFC in the opposite hemisphere eliminated the encoding of reward information. Together, our findings establish that a 6-12 Hz theta rhythm, generated by the rodent MFC, is synchronized to rewarded actions. The cellular and behavioral mechanisms of reward signaling by the medial frontal cortex (MFC) have not been resolved. We report evidence for a 6-12 Hz theta rhythm that is generated by the MFC and synchronized with ongoing consummatory actions. Previous studies of MFC reward signaling have inferred value coding upon temporally sustained activity during the period of reward consumption. Our findings suggest that MFC activity is temporally sustained due to the consumption of the rewarding fluids, and not necessarily the abstract properties of the rewarding fluid. Two other major findings were that the MFC reward signals persist beyond the period of fluid delivery and are generated by neurons within the MFC.
Rodents lick to consume fluids. The reward value of ingested fluids is likely to be encoded by neuronal activity entrained to the lick cycle. Here, we investigated relationships between licking and reward signaling by the medial frontal cortex [MFC], a key cortical region for reward-guided learning and decision-making. Multi-electrode recordings of spike activity and field potentials were made in male rats as they performed an incentive contrast licking task. Rats received access to higher and lower value sucrose rewards over alternating 30 sec periods. They learned to lick persistently when higher value rewards were available and to suppress licking when lower value rewards were available. Spectral analysis of spikes and fields revealed evidence for reward value being encoded by the strength of phase-locking of a 6-12 Hz theta rhythm to the rats’ lick cycle. Recordings during the initial acquisition of the task found that the strength of phase-locking to the lick cycle was strengthened with experience. A modification of the task, with a temporal gap of 2 sec added between reward deliveries, found that the rhythmic signals persisted during periods of dry licking, a finding that suggests the MFC encodes either the value of the currently available reward or the vigor with which rats act to consume it. Finally, we found that reversible inactivations of the MFC in the opposite hemisphere eliminated the encoding of reward information. Together, our findings establish that a 6-12 Hz theta rhythm, generated by the rodent medial frontal cortex, is synchronized to rewarded actions.Significance StatementThe cellular and behavioral mechanisms of reward signaling by the medial frontal cortex [MFC] have not been resolved. We report evidence for a 6-12 Hz theta rhythm that is generated by the MFC and synchronized with ongoing consummatory actions. Previous studies of MFC reward signaling have inferred value coding upon temporally sustained activity during the period of reward consumption. Our findings suggest that MFC activity is temporally sustained due to the consumption of the rewarding fluids, and not necessarily the abstract properties of the rewarding fluid. Two other major findings were that the MFC reward signals persist beyond the period of fluid delivery and are generated by neurons within the MFC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.