Summary Age-related loss of muscle mass and strength (sarcopenia) leads to a decline in physical function and frailty in the elderly. Among the many proposed underlying causes of sarcopenia, mitochondrial dysfunction is inherent in a variety of aged tissues. The intent of this study was to examine the effect of aging on key groups of regulatory proteins involved in mitochondrial biogenesis and how this relates to physical performance in two groups of sedentary elderly participants, classified as high- and low-functioning based on the Short Physical Performance Battery test. Muscle mass was decreased by 38% and 30% in low-functioning elderly (LFE) participants when compared to young and high-functioning elderly (HFE) participants, respectively, and positively correlated to physical performance. Mitochondrial respiration in permeabilized muscle fibers was reduced (41%) in the LFE group when compared to the young, and this was associated with a 30% decline in COX activity. Levels of key metabolic regulators, SIRT3 and PGC-1α were significantly reduced (50%) in both groups of elderly participants when compared to young. Similarly, the fusion protein OPA1 was lower in muscle from elderly subjects, however no changes were detected in Mfn2, Drp1 or Fis1 among the groups. In contrast, protein import machinery (PIM) components Tom22 and cHsp70 were increased in the LFE group when compared to the young. This study suggests that aging in skeletal muscle is associated with impaired mitochondrial function and altered biogenesis pathways, and that this may contribute to muscle atrophy and the decline in muscle performance observed in the elderly population.
Regular physical exercise is considered to be an integral component of cancer care strategies. However, the effect of exercise training on tumor microvascular oxygenation, hypoxia, and vascular function, all of which can affect the tumor microenvironment, remains unknown. Using an orthotopic preclinical model of prostate cancer, we tested the hypotheses that, after exercise training, in the tumor, there would be an enhanced microvascular Po2, increased number of patent vessels, and reduced hypoxia. We also investigated tumor resistance artery contractile properties. Dunning R-3327 AT-1 tumor cells (10(4)) were injected into the ventral prostate of 4-5-mo-old male Copenhagen or Nude rats, which were randomly assigned to tumor-bearing exercise trained (TB-Ex trained; n = 15; treadmill exercise for 5-7 wk) or sedentary groups (TB-Sedentary; n = 12). Phosphorescence quenching was used to measure tumor microvascular Po2, and Hoechst-33342 and EF-5 were used to measure patent vessels and tumor hypoxia, respectively. Tumor resistance artery function was assessed in vitro using the isolated microvessel technique. Compared with sedentary counterparts, tumor microvascular Po2 increased ∼100% after exercise training (TB-Sedentary, 6.0 ± 0.3 vs. TB-Ex Trained, 12.2 ± 1.0 mmHg, P < 0.05). Exercise training did not affect the number of patent vessels but did significantly reduce tumor hypoxia in the conscious, resting condition from 39 ± 12% of the tumor area in TB-Sedentary to 4 ± 1% in TB-Ex Trained. Exercise training did not affect vessel contractile function. These results demonstrate that after exercise training, there is a large increase in the driving force of O2 from the tumor microcirculation, which likely contributes to the considerable reduction in tumor hypoxia. These results suggest that exercise training can modulate the microenvironment of the tumor, such that a sustained reduction in tumor hypoxia occurs, which may lead to a less aggressive phenotype and improve patient prognosis.
Pancreatic islets of Langerhans regulate blood glucose homeostasis by the secretion of the hormone insulin. Like many neuroendocrine cells, the coupling between insulin-secreting β-cells in the islet is critical for the dynamics of hormone secretion. We have examined how this coupling architecture regulates the electrical dynamics that underlie insulin secretion by utilizing a microwell-based aggregation method to generate clusters of a β-cell line with defined sizes and dimensions. We measured the dynamics of free-calcium activity ([Ca(2+)]i) and insulin secretion and compared these measurements with a percolating network model. We observed that the coupling dimension was critical for regulating [Ca(2+)]i dynamics and insulin secretion. Three-dimensional coupling led to size-invariant suppression of [Ca(2+)]i at low glucose and robust synchronized [Ca(2+)]i oscillations at elevated glucose, whereas two-dimensional coupling showed poor suppression and less robust synchronization, with significant size-dependence. The dimension- and size-scaling of [Ca(2+)]i at high and low glucose could be accurately described with the percolating network model, using similar network connectivity. As such this could explain the fundamentally different behavior and size-scaling observed under each coupling dimension. This study highlights the dependence of proper β-cell function on the coupling architecture that will be important for developing therapeutic treatments for diabetes such as islet transplantation techniques. Furthermore, this will be vital to gain a better understanding of the general features by which cellular interactions regulate coupled multicellular systems.
Aging is associated with a loss in muscle known as sarcopenia that is partially attributed to apoptosis. In aging rodents, caloric restriction (CR) increases health and longevity by improving mitochondrial function and the polyphenol resveratrol (RSV) has been reported to have similar benefits. In the present study, we investigated the potential efficacy of using short-term (6 weeks) CR (20%), RSV (50 mg/kg/day), or combined CR + RSV (20% CR and 50 mg/kg/day RSV), initiated at late-life (27 months) to protect muscle against sarcopenia by altering mitochondrial function, biogenesis, content, and apoptotic signaling in both glycolytic white and oxidative red gastrocnemius muscle (WG and RG, respectively) of male Fischer 344 × Brown Norway rats. CR but not RSV attenuated the age-associated loss of muscle mass in both mixed gastrocnemius and soleus muscle, while combined treatment (CR + RSV) paradigms showed a protective effect in the soleus and plantaris muscle (P < 0.05). Sirt1 protein content was increased by 2.6-fold (P < 0.05) in WG but not RG muscle with RSV treatment, while CR or CR + RSV had no effect. PGC-1α levels were higher (2-fold) in the WG from CR-treated animals (P < 0.05) when compared to ad-libitum (AL) animals but no differences were observed in the RG with any treatment. Levels of the anti-apoptotic protein Bcl-2 were significantly higher (1.6-fold) in the WG muscle of RSV and CR + RSV groups compared to AL (P < 0.05) but tended to occur coincident with elevations in the pro-apoptotic protein Bax so that the apoptotic susceptibility as indicated by the Bax to Bcl-2 ratio was unchanged. There were no alterations in DNA fragmentation with any treatment in muscle from older animals. Additionally, mitochondrial respiration measured in permeabilized muscle fibers was unchanged in any treatment group and this paralleled the lack of change in cytochrome c oxidase (COX) activity. These data suggest that short-term moderate CR, RSV, or CR + RSV tended to modestly alter key mitochondrial regulatory and apoptotic signaling pathways in glycolytic muscle and this might contribute to the moderate protective effects against aging-induced muscle loss observed in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.