Small neurons of the dorsal root ganglia (DRG) are known to play an important role in nociceptive mechanisms. These neurons express two types of sodium current, which differ in their inactivation kinetics and sensitivity to tetrodotoxin. Here, we report the cloning of the alpha-subunit of a novel, voltage-gated sodium channel (PN3) from rat DRG. Functional expression in Xenopus oocytes showed that PN3 is a voltage-gated sodium channel with a depolarized activation potential, slow inactivation kinetics, and resistance to high concentrations of tetrodotoxin. In situ hybridization to rat DRG indicated that PN3 is expressed primarily in small sensory neurons of the peripheral nervous system.
Dorsal root ganglion neurons express a wide repertoire of sodium channels with different properties. Here, we report the cloning from rat, dorsal root ganglia (DRG), cellular expression, and functional analysis of a novel tetrodotoxin-sensitive peripheral sodium channel (PN), PN1. PN1 mRNA is expressed in many different tissues. Within the rat DRG, both the mRNA and PN1-like immunoreactivity are present in small and large neurons. The abundance of sodium channel mRNAs in rat DRG is rBI > PN1 PN3 >>> rBIII by quantitative reverse transcription-polymerase chain reaction analysis. Data from reverse transcription-polymerase chain reaction and sequence analyses of human DRG and other human tissues suggest that rat PN1 is an ortholog of the human neuroendocrine channel. In Xenopus oocytes, PN1 exhibits kinetics that are similar to rBIIa sodium currents and is inhibited by tetrodotoxin with an IC 50 of 4.3 ؎ 0.92 nM. Unlike rBIIa, the inactivation kinetics of PN1 are not accelerated by the coexpression of the -subunits.
Alternative splicing of the transcript encoding the beta-amyloid precursor protein (BAPP) of Alzheimer's disease produces multiple mRNA species. Translation of these mRNAs predicts protein products of 770, 751, and 695 amino acids. The difference arises from the inclusion in BAPP-770/751 of a 56-residue insert region which is homologous to Kunitz-type protease inhibitors. We have prepared and affinity-purified anti-peptide antibodies that react specifically with either BAPP-770/751 (insert-specific) or BAPP-695 (junction-specific). A detectable level of the mRNA corresponding to the BAPP-770/751 protein was found in all cell lines tested. Immunoprecipitation of 35S-labeled proteins from these cell lines showed them to contain one or two Mr 105,000 bands reactive with the insert-specific serum, i-291. In contrast, only cos-7 cells and the human neuroblastoma cell line, IMR-32, contained mRNA species that encode the BAPP-695 protein, as shown by Northern analysis with a junction-spanning oligonucleotide probe. A band of Mr 95,000 was immunoprecipitated specifically from these two cell lines using the junction-specific serum, J-284. Indirect immunofluorescence labeling of cells corroborated these findings. All cells reacted with the insert-specific antibodies, i-291 and i-324. Only cos-7 and IMR-32 cells reacted with the junction-specific antibody, J-284. These results demonstrate the usefulness of anti-peptide antibodies for the differential detection of the BAPP-695 and BAPP-770/751 proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.