Platelet production, maintenance, and clearance are tightly controlled processes indicative of platelets' important roles in hemostasis and thrombosis. Platelets are common targets for primary and secondary prevention of several conditions. They are monitored clinically by complete blood counts, specifically with measurements of platelet count (PLT) and mean platelet volume (MPV). Identifying genetic effects on PLT and MPV can provide mechanistic insights into platelet biology and their role in disease. Therefore, we formed the Blood Cell Consortium (BCX) to perform a large-scale meta-analysis of Exomechip association results for PLT and MPV in 157,293 and 57,617 individuals, respectively. Using the low-frequency/rare coding variant-enriched Exomechip genotyping array, we sought to identify genetic variants associated with PLT and MPV. In addition to confirming 47 known PLT and 20 known MPV associations, we identified 32 PLT and 18 MPV associations not previously observed in the literature across the allele frequency spectrum, including rare large effect (FCER1A), low-frequency (IQGAP2, MAP1A, LY75), and common (ZMIZ2, SMG6, PEAR1, ARFGAP3/PACSIN2) variants. Several variants associated with PLT/MPV (PEAR1, MRVI1, PTGES3) were also associated with platelet reactivity. In concurrent BCX analyses, there was overlap of platelet-associated variants with red (MAP1A, TMPRSS6, ZMIZ2) and white (PEAR1, ZMIZ2, LY75) blood cell traits, suggesting common regulatory pathways with shared genetic architecture among these hematopoietic lineages. Our large-scale Exomechip analyses identified previously undocumented associations with platelet traits and further indicate that several complex quantitative hematological, lipid, and cardiovascular traits share genetic factors.
Red blood cell (RBC) traits are important heritable clinical biomarkers and modifiers of disease severity. To identify coding genetic variants associated with these traits, we conducted meta-analyses of seven RBC phenotypes in 130,273 multi-ethnic individuals from studies genotyped on an exome array. After conditional analyses and replication in 27,480 independent individuals, we identified 16 new RBC variants. We found low-frequency missense variants in MAP1A (rs55707100, minor allele frequency [MAF] = 3.3%, p = 2 × 10(-10) for hemoglobin [HGB]) and HNF4A (rs1800961, MAF = 2.4%, p < 3 × 10(-8) for hematocrit [HCT] and HGB). In African Americans, we identified a nonsense variant in CD36 associated with higher RBC distribution width (rs3211938, MAF = 8.7%, p = 7 × 10(-11)) and showed that it is associated with lower CD36 expression and strong allelic imbalance in ex vivo differentiated human erythroblasts. We also identified a rare missense variant in ALAS2 (rs201062903, MAF = 0.2%) associated with lower mean corpuscular volume and mean corpuscular hemoglobin (p < 8 × 10(-9)). Mendelian mutations in ALAS2 are a cause of sideroblastic anemia and erythropoietic protoporphyria. Gene-based testing highlighted three rare missense variants in PKLR, a gene mutated in Mendelian non-spherocytic hemolytic anemia, associated with HGB and HCT (SKAT p < 8 × 10(-7)). These rare, low-frequency, and common RBC variants showed pleiotropy, being also associated with platelet, white blood cell, and lipid traits. Our association results and functional annotation suggest the involvement of new genes in human erythropoiesis. We also confirm that rare and low-frequency variants play a role in the architecture of complex human traits, although their phenotypic effect is generally smaller than originally anticipated.
BackgroundHead and neck cancer (HNC) incidence, mortality and survival rates vary by sex and race, with men and African Americans disproportionately affected. Risk factors for HNC include tobacco and alcohol exposure, with a recent implication of human papillomavirus (HPV) in the pathogenesis of HNC. This study describes the epidemiology of HNC in the United States, examining variation of rates by age, sex, race/ethnicity and potential HPV-association.MethodsWe used the North American Association of Central Cancer Registries (NAACCR) Cancer in North America (CINA) Deluxe Analytic Data to analyze HNC incidence for 1995–2005 from forty population-based cancer registries. We calculated age-adjusted incidence rates and incidence trends using annual percent change by age, sex, race/ethnicity and HPV-association.ResultsMales and Non-Hispanic Blacks experienced greater HNC incidence compared to women and other race/ethnicity groupings. A significant overall increase in HNC incidence was observed among HPV-associated sites during 1995–2005, while non HPV-associated sites experienced a significant decline in HNC incidence. Overall, younger age groups, Non-Hispanic Whites and Hispanics experienced greater increases in incidence for HPV-associated sites, while HNC incidence declined for Non-Hispanic Blacks independent of HPV-association. In particular, for HPV-associated sites, HNC incidence for Non-Hispanic White males aged 45–54 increased at the greatest rate, with an APC of 6.28% (p<0.05). Among non HPV-associated sites, Non-Hispanic Black males aged 0–44 years experienced the greatest reduction in incidence (APC, −8.17%, p<0.05), while a greater decline among the older, 55–64 year age group (APC, −5.44%, p<0.05) occurred in females.ConclusionsThis study provides evidence that HPV-associated tumors are disproportionately affecting certain age, sex and race/ethnicity groups, representing a different disease process for HPV-associated tumors compared to non HPV-associated tumors. Our study suggests that HPV tumor status should be incorporated into treatment decisions for HNC patients to improve prognosis and survival.
A typical human exome harbors dozens of loss-of-function (LOF) variants1, which can lower disease risk factor levels and affect drug efficacy2. We hypothesized that LOF variants are enriched in genes influencing risk factor levels and the onset of common chronic diseases, such as cardiovascular disease and diabetes. To test this hypothesis, we sequenced the exomes of 8,554 individuals and analyzed the effects of predicted LOF variants on 20 chronic disease risk factor phenotypes. Analysis of this sample as discovery and replication strata of equal size verified two relationships in well-studied genes (PCSK9 and APOC3) and identified eight new loci. Previously unknown relationships included elevated fasting glucose in carriers of heterozygous LOF variation in TXNDC5, which encodes a biomarker for type 1 diabetes progression, and apparent recessive effects of C1QTNF8 on serum magnesium levels. These data demonstrate the utility of functional-variant annotation within a large sample of deeply phenotyped individuals for gene discovery.
White blood cells play diverse roles in innate and adaptive immunity. Genetic association analyses of phenotypic variation in circulating white blood cell (WBC) counts from large samples of otherwise healthy individuals can provide insights into genes and biologic pathways involved in production, differentiation, or clearance of particular WBC lineages (myeloid, lymphoid) and also potentially inform the genetic basis of autoimmune, allergic, and blood diseases. We performed an exome array-based meta-analysis of total WBC and subtype counts (neutrophils, monocytes, lymphocytes, basophils, and eosinophils) in a multi-ancestry discovery and replication sample of ∼157,622 individuals from 25 studies. We identified 16 common variants (8 of which were coding variants) associated with one or more WBC traits, the majority of which are pleiotropically associated with autoimmune diseases. Based on functional annotation, these loci included genes encoding surface markers of myeloid, lymphoid, or hematopoietic stem cell differentiation (CD69, CD33, CD87), transcription factors regulating lineage specification during hematopoiesis (ASXL1, IRF8, IKZF1, JMJD1C, ETS2-PSMG1), and molecules involved in neutrophil clearance/apoptosis (C10orf54, LTA), adhesion (TNXB), or centrosome and microtubule structure/function (KIF9, TUBD1). Together with recent reports of somatic ASXL1 mutations among individuals with idiopathic cytopenias or clonal hematopoiesis of undetermined significance, the identification of a common regulatory 3' UTR variant of ASXL1 suggests that both germline and somatic ASXL1 mutations contribute to lower blood counts in otherwise asymptomatic individuals. These association results shed light on genetic mechanisms that regulate circulating WBC counts and suggest a prominent shared genetic architecture with inflammatory and autoimmune diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.