Macroautophagy (herein autophagy) is an evolutionarily conserved process, requiring the gene ATG5, by which cells degrade cytoplasmic constituents and organelles. Here we show that ATG5 is required for efficient B cell development and for the maintenance of B-1a B cell numbers. Deletion of ATG5 in B lymphocytes using Cre-LoxP technology or repopulation of irradiated mice with ATG5 -/-fetal liver progenitors resulted in a dramatic reduction in B-1 B cells in the peritoneum. ATG5 -/-progenitors exhibited a significant defect in B cell development at the pro-to pre-B cell transition, although a proportion of pre-B cells survived to populate the periphery. Inefficient B cell development in the bone marrow was associated with increased cell death, indicating that ATG5 is important for B cell survival during development. In addition, B-1a B cells require ATG5 for their maintenance in the periphery. We conclude that ATG5 is differentially required at discrete stages of development in distinct, but closely related, cell lineages.
Autophagy is implicated in many functions of mammalian cells such as organelle recycling, survival and differentiation, and is essential for the maintenance of T and B lymphocytes. Here, we demonstrate that autophagy is a constitutive process during T cell development. Deletion of the essential autophagy genes Atg5 or Atg7 in T cells resulted in decreased thymocyte and peripheral T cell numbers, and Atg5-deficient T cells had a decrease in cell survival. We employed functional-genetic and integrative computational analyses to elucidate specific functions of the autophagic process in developing T-lineage lymphocytes. Our whole-genome transcriptional profiling identified a set of 699 genes differentially expressed in Atg5-deficient and Atg5-sufficient thymocytes (Atg5-dependent gene set). Strikingly, the Atg5-dependent gene set was dramatically enriched in genes encoding proteins associated with the mitochondrion. In support of a role for autophagy in mitochondrial maintenance in T lineage cells, the deletion of Atg5 led to increased mitochondrial mass in peripheral T cells. We also observed a correlation between mitochondrial mass and Annexin-V staining in peripheral T cells. We propose that autophagy is critical for mitochondrial maintenance and T cell survival. We speculate that, similar to its role in yeast or mammalian liver cells, autophagy is required in T cells for the removal of damaged or aging mitochondria and that this contributes to the cell death of autophagy-deficient T cells.
NF-κB/Rel transcription factors are linked to innate immune responses and APC activation. Whether and how the induction of NF-κB signaling in normal CD4+ T cells regulates effector function are not well-understood. The liberation of NF-κB dimers from inhibitors of κB (IκBs) constitutes a central checkpoint for physiologic regulation of most forms of NF-κB. To investigate the role of NF-κB induction in effector T cell responses, we targeted inhibition of the NF-κB/Rel pathway specifically to T cells. The Th1 response in vivo is dramatically weakened when T cells defective in their NF-κB induction (referred to as IκBα(ΔN) transgenic cells) are activated by a normal APC population. Analyses in vivo, and IL-12-supplemented T cell cultures in vitro, reveal that the mechanism underlying this T cell-intrinsic requirement for NF-κB involves activation of the IFN-γ gene in addition to clonal expansion efficiency. The role of NF-κB in IFN-γ gene expression includes a modest decrease in Stat4 activation, T box expressed in T cell levels, and differentiation efficiency along with a more prominent postdifferentiation step. Further, induced expression of Bcl-3, a trans-activating IκB-like protein, is decreased in T cells as a consequence of NF-κB inhibition. Together, these findings indicate that NF-κB induction in T cells regulates efficient clonal expansion, Th1 differentiation, and IFN-γ production by Th1 lymphocytes at a control point downstream from differentiation.
Dendritic cells (DC) possess a unique capacity for presenting exogenous antigen on major histocompatibility class I, a process that is referred to as cross-presentation, which serves a critical role in microbial and tumor immunity. During cross-presentation, antigens derived from pathogen-infected or tumor cells are internalized and processed by DCs for presentation to cytotoxic T lymphocytes (CTLs). We demonstrate that a signaling pathway initiated by the immunoreceptor tyrosine–based activation motif (ITAM)–containing adaptors DAP12 and FcRγ utilizes the Vav family of Rho guanine nucleotide exchange factors (GEFs) for processing and cross-presentation of particulate, but not soluble, antigens by DCs. Notably, this novel pathway is crucial for processing and presentation of particulate antigens, such as those associated with Listeria monocytogenes bacteria, yet it is not required for antigen uptake. Mechanistically, we provide evidence that in DCs, Vav GEFs are essential to link ITAM-dependent receptors with the activation of the NOX2 complex and production of reactive oxygen species (ROS), which regulate phagosomal pH and processing of particulate antigens for cross-presentation. Importantly, we show that genetic disruption of the DAP12/FcRγ–Vav pathway leads to antigen presentation defects that are more profound than in DCs lacking NOX2, suggesting that ITAM signaling also controls cross-presentation in a ROS-independent manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.