The analysis of transparent conducting oxide nanostructures suffers from a lack of high throughput yet quantitatively sensitive set of analytical techniques that can properly assess their electrical properties and serve both as characterization and diagnosis tools. This is addressed by applying a comprehensive set of characterization techniques to study the electrical properties of solution-grown Al-doped ZnO nanowires as a function of composition from 0 to 4 at. % Al:Zn. Carrier mobility and charge density extracted from sensitive optical absorption measurements are in agreement with those extracted from single-wire field-effect transistor devices. The mobility in undoped nanowires is 28 cm 2 / V s and decreases to ϳ14 cm 2 / V s at the highest doping density, though the carrier density remains approximately constant ͑10 20 cm −3 ͒ due to limited dopant activation or the creation of charge-compensating defects. Additionally, the local geometry of the Al dopant is studied by nuclear magnetic resonance, showing the occupation of a variety of dopant sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.