As a model for studying the generation of antibody diversity, a gene-targeted mouse was produced that is hemizygous for a rearranged V(D)J segment at the immunoglobulin (Ig) heavy chain locus, the other allele being nonfunctional. The mouse also has no functional kappa light chain allele. The heavy chain, when paired with any lambda light chain, is specific for the hapten (4-hydroxy-3-nitrophenyl) acetyl (NP). The primary repertoire of this quasi-monoclonal mouse is monospecific, but somatic hypermutation and secondary rearrangements change the specificity of 20 percent of the antigen receptors on B cells. The serum concentrations of the Ig isotypes are similar to those in nontransgenic littermates, but less than half of the serum IgM binds to NP, and none of the other isotypes do. Thus, neither network interactions nor random activation of a small fraction of the B cell population can account for serum Ig concentrations.
SWAP-70 is a component of an enzyme complex that recombines Ig switch regions in vitro. We report here the cloning of the human cDNA and its B lymphocyte-specific expression. Although its sequence contains three nuclear localization signals, in small resting B cells, SWAP-70 is mainly found in the cytoplasm. On stimulation, SWAP-70 translocates to the nucleus. In activated, class-switching B cell cultures, it is associated with membrane IgG, but not IgM. The membrane Ig association requires a functional pleckstrin homology domain and is controlled by the C terminus. We suggest that SWAP-70 is involved not only in nuclear events but also in signaling in B cell activation.
Interleukin-1β (IL-1β) is a potent mediator of inflammatory responses and plays a role in the differentiation of a number of lymphoid cells. In several inflammatory and autoimmune diseases, serum levels of IL-1β are elevated and correlate with disease development and severity. The central role of the IL-1 pathway in several diseases has been validated by inhibitors currently in clinical development or approved by the FDA. However, the need to effectively modulate IL-1β-mediated local inflammation with the systemic delivery of an efficacious, safe and convenient drug still exists. To meet these challenges, we developed XOMA 052 (gevokizumab), a potent anti-IL-1β neutralizing antibody that was designed in silico and humanized using Human Engineering™ technology. XOMA 052 has a 300 femtomolar binding affinity for human IL-1β and an in vitro potency in the low picomolar range. XOMA 052 binds to a unique IL-1β epitope where residues critical for binding have been identified. We have previously reported that XOMA 052 is efficacious in vivo in a diet-induced obesity mouse model thought to be driven by low levels of chronic inflammation. We report here that XOMA 052 also reduces acute inflammation in vivo, neutralizing the effect of exogenously administered human IL-1β and blocking peritonitis in a mouse model of acute gout. Based on its high potency, novel mechanism of action, long half-life, and high affinity, XOMA 052 provides a new strategy for the treatment of a number of inflammatory, autoimmune and metabolic diseases in which the role of IL-1β is central to pathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.