Flood inundation and retention are key hydrological characteristics of floodplain wetlands. This study developed a methodology for regional estimates of potential floodwater retention under floodplain inundation from ecologically significant flood return periods by coupling remote sensing and geographic information system technologies with spatial hydrological modelling. The Macquarie Marshes in Australia were selected as the case study area. Time series of Moderate Resolution Imaging Spectroradiometer 8-day composite imagery were related to peak flows (Ml day À1 ) of the 1-in-10 return period. Inundation extent in corresponding images was detected using the modified normalised difference water index (mNDWI). The potential maximum soil water retention was derived using a spatial hydrological modelling approach, which is driven by the Soil Conservation Service Curve Number (SCS CN) method. Soil and land cover data were collected and intersected to determine spatial distribution of CN using ArcGIS. The CN-based retention capacity map was then integrated with an inundation extent map to delineate the spatial pattern of retention under inundation. The results have ecological implications in relation to the response of broad eco-types in wetlands. This study has proved that the integration of remote sensing, geographic information system and spatial hydrologic modelling can be used to provide essential information as inputs to the management of environmental flows in terms of sustaining ecosystem function, biodiversity and habitat suitability.
Wetlands are one of the most threatened ecosystems on earth. Globally, there is growing demand to develop infrastructure to harvest water resources to support agriculture, threatening the ecological integrity of associated wetland ecosystems. We investigated the potential ecological impacts on floodplain wetland connectivity in northern Australia in response to changes in flow regime due to dam construction and climate change. Results for this study indicate that a drier climate and/or dam construction in catchments have the potential to reduce the effective size of the floodplain and reduce wetland connectivity. A drier climate will reduce rainfall and subsequent catchment run‐off, resulting in a decrease in the magnitude of riverine flows. In contrast, dams in the upper catchment will reduce the magnitude of flows downstream. The reduction in flows under both dam development and a drier climate will result in reduced extent and duration of floodplain inundation and decreased wetland connectivity. As a result, we anticipate that this loss of connectivity will reduce the capacity for nutrients, carbon and primary production to be flushed into the river channel, as well as reduce the ability for biota such as fish and turtles to move between in‐channel and off‐channel habitats.
Hydrological connectivity between rivers and wetlands is considered one of the key critical factors for the integrity of floodplain landscapes. This study is a comprehensive modelling exercise on quantifying flood-induced wetland connectivity and the potential impacts of climate and water storage in an unregulated river basin in northern Australia. Flood inundation was simulated using a two-dimensional hydrodynamic model and the connectivities between wetlands and rivers were calculated using geoprocessing tools in ArcGIS. Wetlands in the floodplain were identified using waterbody maps derived from satellite imagery. A broadly representative sample of 20 wetlands were selected from 158 wetlands in the Mitchell basin considering location, size and spatial distribution. Five flood events ranging from 1 in 2 to 1 in 100 years were investigated to evaluate how connectivity changes with flood magnitude. Connectivities were assessed for the current condition as well as for two scenarios of future climate (Cwet and Cdry) and one scenario of dam storage. Results showed that a 1 in 100 years event inundated about 5450 km2 of land compared to 1160 km2 for a 1 in 2 years event. Average connectivity of wetlands in the Mitchell basin varies from 1 to 5 days for the floods of 1 in 2 to 1 in 26 years. As expected, a large flood produces longer duration of connectivity relative to a small flood. Results also showed that reduction in mean connectivity under a dryer climate (up to 1.8 days) is higher than the possibility of increase under a wet climate (up to 1 day). The impacts of a water storage, in the headwater catchment, are highly pronounced in terms of inundation and wetland connectivity (e.g., mean connectivity reduced by 1.7 days). The relative change in connectivity is higher for a small flood compared to that of a large event. These results demonstrate that there is a possibility of both increase and decease in connectivity under future climate. However, any water storage will negatively impact the connectivity between floodplain waterbodies and thus reduce the material exchange resulting in a reduction in primary and secondary productions in rivers and wetlands.
The common carp (Cyprinus carpio) is an invasive species in the rivers and waterways of southeastern Australia, and it has been implicated in the serious decline of many native fish species. Over the past 50 years, various control options have been explored, and to date, these have been ineffective or cost-prohibitive. Most recently, cyprinid herpesvirus 3 (CyHV-3) has been proposed as a biocontrol agent because of its high specificity and mortality rate. However, the virus is known to be only effective in a permissive water temperature range of approximately 16–28 °C. To define when this occurs, we undertook a hydrological reconstruction of five diverse river catchments (>130,000 km2) of southeastern Australia over three decades. This confirmed, in the studied areas, that while water temperatures are permissive from spring through to autumn, the time of year that this starts and ends is highly variable, interannually, and with strong latitudinal and altitudinal gradients between and within catchments. The results show that the virus should be effective with respect to water temperature throughout the water temperature range that carp occur in most of southeastern Australia. However, detailed water temperature estimation would still be required to determine the exact week of the start of release in any given catchment. Referring to observations in wild carp populations, we point out the limitation of developing a “release strategy” based solely on water temperature modelling and the need to incorporate fish biology and ecology into this planning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.