Gesture recognition is topical in computer science and aims at interpreting human gestures via mathematical algorithms. Among the numerous applications are physical rehabilitation and imitation games. In this work, we suggest performing human gesture recognition within the context of a serious imitation game, which would aim at improving social interactions with teenagers with autism spectrum disorders. We use an artificial intelligence algorithm to detect the skeleton of the participant, then model the human pose space and describe an imitation learning method using a Gaussian Mixture Model in the Riemannian manifold.
Autism spectrum disorder is a neurodevelopmental condition that includes issues with communication and social interactions. People with ASD also often have restricted interests and repetitive behaviors. In this paper we build preliminary bricks of an automated gesture imitation game that will aim at improving social interactions with teenagers with ASD. The structure of the game is presented, as well as support tools and methods for skeleton detection and imitation learning. The game shall later be implemented using an interactive robot.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.