The nanopore technique has great potential to discriminate conformations of proteins. It is a very interesting system to mimic and understand the process of translocation of biomacromolecules through a cellular membrane. In particular, the unfolding and folding of proteins before and after going through the nanopore are not well understood. We study the thermal unfolding of a protein, probed by two protein nanopores: aerolysin and α-hemolysin. At room temperature, the native folded protein does not enter into the pore. When we increase the temperature from 25 to 50 °C, the molecules unfold and the event frequency of current blockade increases. A similar sigmoid function fits the normalized event frequency evolution for both nanopores, thus the unfolding curve does not depend on the structure and the net charge of the nanopore. We performed also a circular dichroism bulk experiment. We obtain the same melting temperature (around 45 °C) using the bulk and single molecule techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.