While multicollinearity may increase the difficulty of interpreting multiple regression (MR) results, it should not cause undue problems for the knowledgeable researcher. In the current paper, we argue that rather than using one technique to investigate regression results, researchers should consider multiple indices to understand the contributions that predictors make not only to a regression model, but to each other as well. Some of the techniques to interpret MR effects include, but are not limited to, correlation coefficients, beta weights, structure coefficients, all possible subsets regression, commonality coefficients, dominance weights, and relative importance weights. This article will review a set of techniques to interpret MR effects, identify the elements of the data on which the methods focus, and identify statistical software to support such analyses.
Correlation matrices and standard deviations are the building blocks of many of the commonly conducted analyses in published research, and AERA and APA reporting standards recommend their inclusion when reporting research results. The authors argue that the inclusion of correlation/covariance matrices, standard deviations, and means can enhance findings in education and psychology by permitting secondary researchers to (a) conduct commonly utilized traditional univariate and multivariate analyses not initially performed in primary studies, (b) produce effect sizes and other statistics not included in prior published literature, and (c) conduct analyses once difficult to perform. Furthermore, meta-analytic thinking is encouraged when researchers have the ability to conduct the same analyses on multiple studies and then compare these findings across studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.