Determining the effect of gene deletion is a fundamental approach to understanding gene function. Conventional genetic screens exhibit biases, and genes contributing to a phenotype are often missed. We systematically constructed a nearly complete collection of gene-deletion mutants (96% of annotated open reading frames, or ORFs) of the yeast Saccharomyces cerevisiae. DNA sequences dubbed 'molecular bar codes' uniquely identify each strain, enabling their growth to be analysed in parallel and the fitness contribution of each gene to be quantitatively assessed by hybridization to high-density oligonucleotide arrays. We show that previously known and new genes are necessary for optimal growth under six well-studied conditions: high salt, sorbitol, galactose, pH 8, minimal medium and nystatin treatment. Less than 7% of genes that exhibit a significant increase in messenger RNA expression are also required for optimal growth in four of the tested conditions. Our results validate the yeast gene-deletion collection as a valuable resource for functional genomics.
The functions of many open reading frames (ORFs) identified in genome-sequencing projects are unknown. New, whole-genome approaches are required to systematically determine their function. A total of 6925 Saccharomyces cerevisiae strains were constructed, by a high-throughput strategy, each with a precise deletion of one of 2026 ORFs (more than one-third of the ORFs in the genome). Of the deleted ORFs, 17 percent were essential for viability in rich medium. The phenotypes of more than 500 deletion strains were assayed in parallel. Of the deletion strains, 40 percent showed quantitative growth defects in either rich or minimal medium.
The green fluorescent protein (GFP) from the jellyfish Aequorea victoria has attracted much attention as a tool to study a number of biological processes. This study describes the use of GFP as a vital reporter molecule for localization and expression studies in Saccharomyces cerevisiae. Construction of GFP expression vectors which allow N‐ or C‐terminal fusion of the gfp gene to a gene of interest allowed the generation of fusion proteins whose subcellular localization was followed by fluorescence microscopy in living yeast cells. Analysis of three unknown open reading frames obtained from the budding yeast chromosome XIV resulted in distinct staining patterns, allowing prediction of the cellular localization of these unknown proteins. Furthermore, GFP was used to construct a gene replacement cassette which, after homologous integration into the genomic locus, placed the gfp gene behind a promoter of interest. The amount of GFP produced from this promoter was then quantified in living yeast cells by flow cytometry. With this novel replacement cassette a gene of interest can be deleted and at the same time its expression level studied under various growth conditions. The experiments presented here suggest that GFP represents a convenient fluorescent marker for localization studies as well as gene expression studies in budding yeast. Systematic studies of a large number of genes should benefit from such assays.
The target of rapamycin protein (TOR) is a highly conserved ataxia telangiectasia-related protein kinase essential for cell growth. Emerging evidence indicates that TOR signaling is highly complex and is involved in a variety of cellular processes. To understand its general functions, we took a chemical genomics approach to explore the genetic interaction between TOR and other yeast genes on a genomic scale. In this study, the rapamycin sensitivity of individual deletion mutants generated by the Saccharomyces Genome Deletion Project was systematically measured. Our results provide a global view of the rapamycin-sensitive functions of TOR. In contrast to conventional genetic analysis, this approach offers a simple and thorough analysis of genetic interaction on a genomic scale and measures genetic interaction at different possible levels. It can be used to study the functions of other drug targets and to identify novel protein components of a conserved core biological process such as DNA damage checkpoint͞repair that is interfered with by a cell-permeable chemical compound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.