Highlights • After 47 years, whole tree harvesting (WTH) increased richness of ground cover species compared to conventionally managed stands. • Higher occurrence of the oligotrophic species after WTH suggested reduction of soil nutrient content, hence formation of different plant community. • WTH, apparently, facilitated recovery of species typical for later successional stages.
The long-term (50 years) effect of whole-tree harvesting (stump harvesting) on ground vegetation in experimental drained Norway spruce (Picea abies (L.) Karst.) stands was studied. We used a chronosequence approach to assess the long-term impact of whole-tree harvesting (WTH) on stands’ ground vegetation. WTH stands were compared with four control stands with different age and with the same forest type: young stand (15 years), middle-aged stand (45 years), mature stand (110 years) and over-mature stand (140 years). Species richness was similar between the WTH stand and middle-aged stand (61 and 60 species, respectively). Shannon-Wiener diversity indices in the WTH and middle-aged stand (3.40 and 3.19, respectively) indicated that the stands were similar to each other. A community similarity analysis showed that the composition of vegetation was similar between the WTH and middle-aged stand, although some species like Lycopodium clavatum and Diphasiastrum complanatum occurred only in the WTH stand. The study showed that a period of 50 years is sufficient for ground vegetation of a typical drained spruce forest to recover after WTH management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.