Automotive radars are able to guarantee high performances at the expenses of a relatively low cost, and recently their application has been extended to several fields in addition to the original one. In this paper we consider the use of this kind of radars to discriminate different types of people’s movements in a real context. To this end, we exploit two different maps obtained from radar, that is, a spectrogram and a range-Doppler map. Through the application of dimensionality reduction methods, such as principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) algorithm, and the use of machine learning techniques we prove that is possible to classify with a very good precision people’s way of walking even employing commercial devices specifically designed for other purposes.
We consider the problem of downloading content from a cellular network where content is cached at the wireless edge while achieving privacy. In particular, we consider private information retrieval (PIR) of content from a library of files, i.e., the user wishes to download a file and does not want the network to learn any information about which file she is interested in. To reduce the backhaul usage, content is cached at the wireless edge in a number of small-cell base stations (SBSs) using maximum distance separable codes. We propose a PIR scheme for this scenario that achieves privacy against a number of spy SBSs that (possibly) collaborate. The proposed PIR scheme is an extension of a recently introduced scheme by Kumar et al. to the case of multiple code rates, suitable for the scenario where files have different popularities. We then derive the backhaul rate and optimize the content placement to minimize it. We prove that uniform content placement is optimal, i.e., all files that are cached should be stored using the same code rate. This is in contrast to the case where no PIR is required. Furthermore, we show numerically that popular content placement is optimal for some scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.