In the outer membrane of gram‐negative bacteria, O‐antigen segments of lipopolysaccharide (LPS) form a chemomechanical barrier, whereas lipid A moieties anchor LPS molecules. Upon infection, human guanylate binding protein‐1 (hGBP1) colocalizes with intracellular gram‐negative bacterial pathogens, facilitates bacterial killing, promotes activation of the lipid A sensor caspase‐4, and blocks actin‐driven dissemination of the enteric pathogen Shigella. The underlying molecular mechanism for hGBP1's diverse antimicrobial functions is unknown. Here, we demonstrate that hGBP1 binds directly to LPS and induces “detergent‐like” LPS clustering through protein polymerization. Binding of polymerizing hGBP1 to the bacterial surface disrupts the O‐antigen barrier, thereby unmasking lipid A, eliciting caspase‐4 recruitment, enhancing antibacterial activity of polymyxin B, and blocking the function of the Shigella outer membrane actin motility factor IcsA. These findings characterize hGBP1 as an LPS‐binding surfactant that destabilizes the rigidity of the outer membrane to exert pleiotropic effects on the functionality of gram‐negative bacterial cell envelopes.
Semiconducting single-walled carbon nanotubes (SWCNTs) are versatile near-infrared (NIR) fluorophores. They are noncovalently modified to create sensors that change their fluorescence when interacting with biomolecules. However, noncovalent chemistry has several limitations and prevents a consistent way to molecular recognition and reliable signal transduction. Here, we introduce a widely applicable covalent approach to create molecular sensors without impairing the fluorescence in the NIR (>1000 nm). For this purpose, we attach single-stranded DNA (ssDNA) via guanine quantum defects as anchors to the SWCNT surface. A connected sequence without guanines acts as flexible capture probe allowing hybridization with complementary nucleic acids. Hybridization modulates the SWCNT fluorescence and the magnitude increases with the length of the capture sequence (20 > 10 ≫ 6 bases). The incorporation of additional recognition units via this sequence enables a generic route to NIR fluorescent biosensors with improved stability. To demonstrate the potential, we design sensors for bacterial siderophores and the SARS CoV-2 spike protein. In summary, we introduce covalent guanine quantum defect chemistry as rational design concept for biosensors.
Human guanylate-binding protein 1 (hGBP1) is a key player in innate immunity and fights diverse intracellular microbial pathogens. Its antimicrobial functions depend on hGBP1's GTP binding-and hydrolysis-induced abilities to form large, structured polymers and to attach to lipid membranes. Crucial for both of these biochemical features is the nucleotide-controlled release of the C terminally located farnesyl moiety. Here, we address molecular details of the hGBP1 membrane binding mechanism by employing recombinant, fluorescently labeled hGBP1, and artificial membranes. We demonstrate the importance of the GTPase activity and the resulting structural rearrangement of the hGBP1 molecule, which we term the open state. This open state is supported and stabilized by homodimer contacts involving the middle domain of the protein and is further stabilized by binding to the lipid bilayer surface. We show that on the surface of the lipid bilayer a hGBP1 monolayer is built in a pins in a pincushion-like arrangement with the farnesyl tail integrated in the membrane and the N-terminal GTPase domain facing outwards. We suggest that similar intramolecular contacts between neighboring hGBP1 molecules are responsible for both polymer formation and monolayer formation on lipid membranes. Finally, we show that tethering of large unilamellar vesicles occurs after the vesicle surface is fully covered by the monolayer. Both hGBP1 polymer formation and hGBP1-induced vesicle tethering have implications for understanding the molecular mechanism of combating bacterial pathogens. DatabasesStructural data are available in RCSB Protein Data Bank under the accession numbers: 6K1Z, 2D4H. AbbreviationsAlF X , aluminum fluoride; DSP, dynamin superfamily protein; FRET, F€ orster resonance energy transfer; GDP, guanosine diphosphate; GED, GTPase effector domain; GMP, guanosine monophosphate; GppNHp, 5 0 -guanylyl imidodiphosphate; GTP, guanosine triphosphate; GTPcS, guanosine 5'-O-(gamma-thio)triphosphate; GUV, giant unilamellar vesicle; hGBP1, human guanylate-binding protein 1; hGBP1 fn , farnesylated human guanylate-binding protein 1; LG, large GTPase domain; LUV, large unilamellar vesicle; MD, middle domain.
Single-walled carbon nanotubes (SWCNTs) are versatile near infrared (NIR) fluorescent building blocks for biosensors. Their surface is chemically tailored to respond to analytes by a change in fluorescence. However, intensity-based signals are easily affected by external factors such as sample movements. Here, we demonstrate fluorescence lifetime imaging microscopy (FLIM) of SWCNT-based sensors in the NIR. We tailor a confocal laser scanning microscope (CLSM) for NIR signals (> 800 nm) and employ time correlated single photon counting of (GT) 10 -DNA functionalized SWCNTs. They act as sensors for the important neurotransmitter dopamine. Their fluorescence lifetime (> 900 nm) decays biexponentially and the longer lifetime component (370 ps) increases by up to 25 % with dopamine concentration. These sensors serve as paint to cover cells and report extracellular dopamine in 3D via FLIM. Therefore, we demonstrate the potential of fluorescence lifetime as a readout of SWCNT-based NIR sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.