The ATP-binding cassette transporter ChoVWX is one of several choline import systems operating in Sinorhizobium meliloti. Here fluorescence-based ligand binding assays were used to quantitate substrate binding by the periplasmic ligandbinding protein ChoX. These data confirmed that ChoX recognizes choline and acetylcholine with high and medium affinity, respectively. We also report the crystal structures of ChoX in complex with either choline or acetylcholine. These structural investigations revealed an architecture of the ChoX binding pocket and mode of substrate binding similar to that reported previously for several compatible solute-binding proteins. Additionally the ChoX-acetylcholine complex permitted a detailed structural comparison with the carbamylcholinebinding site of the acetylcholine-binding protein from the mollusc Lymnaea stagnalis. In addition to the two liganded structures of ChoX, we were also able to solve the crystal structure of ChoX in a closed, substrate-free conformation that revealed an architecture of the ligand-binding site that is superimposable to the closed, ligand-bound form of ChoX. This structure is only the second of its kind and raises the important question of how ATP-binding cassette transporters are capable of distinguishing liganded and unligandedclosed states of the binding protein.
To understand the mechanisms of ectoine-induced osmoprotection in Sinorhizobium meliloti, a proteomic examination of S. meliloti cells grown in minimal medium supplemented with ectoine was undertaken. This revealed the induction of 10 proteins. The protein products of eight genes were identified by using matrixassisted laser desorption ionization-time-of-flight mass spectrometry. Five of these genes, with four other genes whose products were not detected on two-dimensional gels, belong to the same gene cluster, which is localized on the pSymB megaplasmid. Four of the nine genes encode the characteristic components of an ATP-binding cassette transporter that was named ehu, for ectoine/hydroxyectoine uptake. This transporter was encoded by four genes (ehuA, ehuB, ehuC, and ehuD) that formed an operon with another gene cluster that contains five genes, named eutABCDE for ectoine utilization. On the basis of sequence homologies, eutABCDE encode enzymes with putative and hypothetical functions in ectoine catabolism. Analysis of the properties of ehuA and eutA mutants suggests that S. meliloti possesses at least one additional ectoine catabolic pathway as well as a lower-affinity transport system for ectoine and hydroxyectoine. The expression of ehuB, as determined by measurements of UidA activity, was shown to be induced by ectoine and hydroxyectoine but not by glycine betaine or by high osmolality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.