Leishmania major are intramacrophage parasites whose eradication requires the induction of T helper 1 (Th1) effector cells capable of activating macrophages to a microbicidal state. Interleukin 12 (IL-12) has been recently identified as a macrophage-derived cytokine capable of mediating Th1 effector cell development, and of markedly enhancing interferon gamma (IFN-gamma) production by T cells and natural killer cells. Infection of macrophages in vitro by promastigotes of L. major caused no induction of IL-12 p40 transcripts, whereas stimulation using heat-killed Listeria or bacterial lipopolysaccharide induced readily detectable IL-12 mRNA. Using a competitor construct to quantitate a number of transcripts, a kinetic analysis of cytokine induction during the first few days of infection by L. major was performed. All strains of mice examined, including susceptible BALB/c and resistant C57BL/6, B10.D2, and C3H/HeN, had the appearance of a CD4+ population in the draining lymph nodes that contained transcripts for IL-2, IL-4, and IFN-gamma (and in some cases, IL-10) that peaked 4 d after infection. In resistant mice, the transcripts for IL-2, IL-4, and IL-10 were subsequently downregulated, whereas in susceptible BALB/c mice, these transcripts were only slightly decreased, and IL-4 continued to be reexpressed at high levels. IL-12 transcripts were first detected in vivo by 7 d after infection, consistent with induction by intracellular amastigotes. Challenge of macrophages in vitro confirmed that amastigotes, in contrast to promastigotes, induced IL-12 p40 mRNA. Reexamination of the cytokine mRNA at 4 d revealed expression of IL-13 in all strains analyzed, suggesting that IL-2 and IL-13 may mediate the IL-12-independent production of IFN-gamma during the first days after infection. Leishmania have evolved to avoid inducing IL-12 from host macrophages during transmission from the insect vector, and cause a striking induction of mRNAs for IL-2, IL-4, IL-10, and IL-13 in CD4+ T cells. Each of these activities may favor survival of the organism.
Creutzfeldt-Jakob disease (CJD) of humans and scrapie of animals are degenerative, transmissible neurologic diseases caused by prions. The only known macromolecules within prions are prion proteins (PrP). The cDNA encoding the hamster prion protein (PrP 27-30) has been cloned and sequenced (Oesch et al., 1985). Using that hamster PrP cDNA, we screened a human retina cDNA library and sequenced the cDNA clone with the longest hybridizing insert. This insert was found to contain a long open reading frame (ORF) encoding the human prion protein. Northern transfer analysis showed that a related poly(A)+RNA measuring approximately 2.5 kb is expressed in a variety of human neuroectodermal cell lines. Human PrP differed from hamster PrP at 27 of 253 amino acids and at 98 of 759 ORF nucleotides. Conservation of PrP amino acid sequence between hamster and human is nearly 90%, reflecting similar structural features and shared antigenicity of the two proteins (Bockman et al., 1985). The human PrP sequence contained a presumptive amino-terminal signal peptide of 22 amino acids, two hydrophobic segments of sufficient length to span membranes, and two possible sites for N-glycosylation. The conservation between the hamster and human prion proteins suggests that they may have an important role in cellular metabolism and may explain the similarities between scrapie and CJD.
Multiple lines of evidence indicate that PrPSc, found only in scrapie, is a necessary component of the infectious scrapie agent. Equally compelling is the evidence that its accumulation in the brain causes the neuropathology characteristic of scrapie. We measured the regional concentration of PrPSc in nine brain regions throughout the course of scrapie in the Syrian hamster following intrathalamic inoculation of prions. PrPSc was compared to the regional concentration of glial fibrillary acidic protein, a measure of reactive astrocytic gliosis. PrPSc was detected first in the thalamus 14 to 21 days postinoculation and next in the septum at 28 days. Initiation of PrPSc synthesis and accumulation in the thalamus was attributable to the inoculum and in the septum to ventricular spread of de novo synthesized PrPSc. The timing and pattern of PrPSc accumulation in all other brain regions suggested transmission along neuroanatomic pathways. Reactive astrocytic gliosis followed PrPSc accumulation in each region by 1 to 2 weeks. Brain PrPSc, determined by summing the concentrations in each brain region, correlated well with scrapie infectivity titers throughout the course of infection (correlation coefficient = 0.975; slope of linear regression line = 1.136). Our results support the hypothesis that PrPSc participates in both the etiology and pathogenesis of prion diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.