BackgroundRecent molecular studies have revealed a highly complex bacterial assembly in the canine intestinal tract. There is mounting evidence that microbes play an important role in the pathogenesis of acute and chronic enteropathies of dogs, including idiopathic inflammatory bowel disease (IBD). The aim of this study was to characterize the bacterial microbiota in dogs with various gastrointestinal disorders.Methodology/Principal FindingsFecal samples from healthy dogs (n = 32), dogs with acute non-hemorrhagic diarrhea (NHD; n = 12), dogs with acute hemorrhagic diarrhea (AHD; n = 13), and dogs with active (n = 9) and therapeutically controlled idiopathic IBD (n = 10) were analyzed by 454-pyrosequencing of the 16S rRNA gene and qPCR assays. Dogs with acute diarrhea, especially those with AHD, had the most profound alterations in their microbiome, as significant separations were observed on PCoA plots of unweighted Unifrac distances. Dogs with AHD had significant decreases in Blautia, Ruminococcaceae including Faecalibacterium, and Turicibacter spp., and significant increases in genus Sutterella and Clostridium perfringens when compared to healthy dogs. No significant separation on PCoA plots was observed for the dogs with IBD. Faecalibacterium spp. and Fusobacteria were, however, decreased in the dogs with clinically active IBD, but increased during time periods of clinically insignificant IBD, as defined by a clinical IBD activity index (CIBDAI).ConclusionsResults of this study revealed a bacterial dysbiosis in fecal samples of dogs with various GI disorders. The observed changes in the microbiome differed between acute and chronic disease states. The bacterial groups that were commonly decreased during diarrhea are considered to be important short-chain fatty acid producers and may be important for canine intestinal health. Future studies should correlate these observed phylogenetic differences with functional changes in the intestinal microbiome of dogs with defined disease phenotypes.
Background Mounting evidence from human studies suggests that bile acid dysmetabolism might play a role in various human chronic gastrointestinal diseases. It is unknown whether fecal bile acid dysmetabolism occurs in dogs with chronic inflammatory enteropathy (CE). Objective To assess microbial dysbiosis, fecal unconjugated bile acids (fUBA), and disease activity in dogs with steroid‐responsive CE. Animals Twenty‐four healthy control dogs and 23 dogs with steroid‐responsive CE. Methods In this retrospective study, fUBA were measured and analyzed. Fecal microbiota were assessed using a dysbiosis index. The canine inflammatory bowel disease activity index was used to evaluate remission of clinical signs. This was a multi‐institutional study where dogs with steroid‐responsive CE were evaluated over time. Results The dysbiosis index was increased in dogs with CE (median, 2.5; range, −6.2 to 6.5) at baseline compared with healthy dogs (median, −4.5; range, −6.5 to −2.6; P = .002) but did not change in dogs with CE over time. Secondary fUBA were decreased in dogs with CE (median, 29%; range, 1%‐99%) compared with healthy dogs (median, 88%; 4%‐96%; P = .049). The percent of secondary fUBA in dogs with CE increased from baseline values (median, 28%; range, 1%‐99%) after 2‐3 months of treatment (median, 94%; range, 1%‐99%; P = 0.0183). Conclusions and Clinical Importance These findings suggest that corticosteroids regulate fecal bile acids in dogs with CE. Additionally, resolution of clinical activity index in dogs with therapeutically managed CE and bile acid dysmetabolism are likely correlated. However, subclinical disease (i.e., microbial dysbiosis) can persist in dogs with steroid‐responsive CE.
BackgroundCobalamin deficiency is commonly associated with chronic enteropathies (CE) in dogs and current treatment protocols recommend parenteral supplementation. In humans, several studies have reported equal efficacy of oral and parenteral cobalamin administration of cobalamin.ObjectivesTo retrospectively evaluate whether oral cobalamin supplementation can restore normocobalaminemia in dogs with CE and hypocobalaminemia.AnimalsFifty‐one client‐owned dogs with various signs of CE and hypocobalaminemia.Material and MethodsRetrospective study based on a computerized database search for dogs treated at Evidensia Specialist Animal Hospital, Helsingborg, Sweden during January 2012–March 2014. Inclusion criteria were dogs with signs of CE, an initial serum cobalamin ≤270 ng/L (reference interval: 234–811 ng/L) and oral treatment with cobalamin tablets. Serum cobalamin for follow‐up was analyzed 20–202 days after continuous oral cobalamin supplementation started.ResultsAll dogs became normocobalaminemic with oral cobalamin supplementation. The mean increase in serum cobalamin concentration after treatment was 794 ± 462 ng/L. Serum cobalamin concentrations were significantly higher after supplementation (mean 1017 ± 460 ng/L; P < .0001) than at baseline (mean 223 ± 33 ng/L).Conclusion and Clinical ImportanceOur results suggest that oral cobalamin supplementation is effective in normalizing serum cobalamin concentrations in dogs with CE. Prospective studies comparing cellular cobalamin status in dogs being treated with parenteral versus oral cobalamin supplementation are warranted before oral supplementation can be recommended for routine supplementation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.